Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Systemic inhibition of tumor growth and tumor metastases by intramuscular administration of the endostatin gene

Abstract

Tumors require ongoing angiogenesis to support their growth. Inhibition of angiogenesis by production of angiostatic factors should be a viable approach for cancer gene therapy. Endostatin, a potent angiostatic factor, was expressed in mouse muscle and secreted into the bloodstream for up to 2 weeks after a single intramuscular administration of the endostatin gene. The biological activity of the expressed endostatin was demonstrated by its ability to inhibit systemic angiogenesis. Moreover, the sustained production of endostatin by intramuscular gene therapy inhibited both the growth of primary tumors and the development of metastatic lesions. These results demonstrate the potential utility of intramuscular delivery of an antiangiogenic gene for treatment of disseminated cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: In vitro expression of biologically active endostatin.
Figure 2: Serum level of endostatin after intramuscular administration of formulated mouse endostatin expression plasmid.
Figure 3: Inhibition of subcutaneous and lung tumors by intramuscular administration of formulated endostatin plasmid.
Figure 4: Inhibition of tumor vasularization and systemic angiogenesis by intramuscular administration of an endostatin gene medicine.
Figure 5: Effect of DNA dose on tumor growth by intramuscular administration of formulated endostatin plasmid.

Similar content being viewed by others

References

  1. Sugarbaker, E.V., Thornthwaite, J. & Ketcham,, A.S. in Progress in Cancer Research and Therapy (eds Day, S.B., Myers, W.P.L., Stansly, P., Garattini, S. & Lewis, M.G.) 227–240 (Raven Press, New York, 1977 ).

    Google Scholar 

  2. Warren, B.A. Chauvin, W.J. & Philips, J. in Progress in Cancer Research and Therapy (eds Day, S.B., Myers, W.P.L., Stansly, P., Garattini, S. & Lewis, M.G.) 185–197 (Raven Press, New York, 1977 ).

    Google Scholar 

  3. Clark, W.H.J. Model predicting survival in stage I melanoma based on tumor progression. J. Natl. Cancer Inst. 81, 1893– 1904 (1989).

    Article  PubMed  Google Scholar 

  4. Prehn, R.T. The inhibition of tumor growth by tumor mass. Cancer Res. 51, 2–4 (1991).

    CAS  PubMed  Google Scholar 

  5. Prehn, R.T. Two competing influences that may explain concomitant tumor resistance. Cancer Res. 53, 3266–3269 (1993).

    CAS  PubMed  Google Scholar 

  6. O'Reilly, M.S. et al. The suppression of tumor metastases by a primary tumor. Surg. Forum 44, 474–478 (1993).

    Google Scholar 

  7. O'Reilly, M.S. et al. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79, 315–328 (1994).

    Article  CAS  PubMed  Google Scholar 

  8. O'Reilly, M.S. et al. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88, 277–285 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Volpert, O.V., Lawler, J. & Bouck, N.P. A human fibrosarcoma inhibits systemic angiogenesis and the growth of experimental metastases via thrombospondin-1. Proc. Natl. Acad. Sci. USA 95, 6343–6348 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Holmgren, L., O'Reilly, M.S. & Folkman, J. Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nat. Med. 1, 149–153 ( 1995).

    Article  CAS  PubMed  Google Scholar 

  11. O'Reilly, M.S., Holmgren, L., Chen, C., & Folkman, J. Angiostatin induces and sustains dormancy of human primary tumors in mice. Nat. Med . 2, 689–692 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  12. Lannutti, B.J., Gately, S.T., Quevedo, M.E., Soff, G.A., & Paller, A.S. Human angiostatin inhibits murine hemangioendothelioma tumor growth in vivo. Cancer Res. 57, 5277–5280 (1997).

    CAS  PubMed  Google Scholar 

  13. Sim, B.K. et al. A recombinant human angiostatin protein inhibits experimental primary and metastatic cancer. Cancer Res. 57, 1329– 1334 (1997).

    CAS  PubMed  Google Scholar 

  14. Boehm, T., Folkman, J., Browder, T. & O'Reilly, M.S. Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature 390, 404–407 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  15. Folkman, J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat. Med. 1, 27–31 ( 1997).

    Article  Google Scholar 

  16. Hanahan, D. & Folkman, J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86, 353–364 (1996).

    Article  CAS  PubMed  Google Scholar 

  17. Wolff, J.A. et al. Direct gene transfer into mouse muscle in vivo. Science 247, 1465–1468 ( 1990).

    Article  CAS  PubMed  Google Scholar 

  18. Davis, H.L., Demeneix, B.A., Quantin, B., Coulombe, J. & Whalen, R.G. Plasmid DNA is superior to viral vectors for direct gene transfer into adult mouse skeletal muscle. Hum. Gene Ther. 4, 733–740 (1993).

    Article  CAS  PubMed  Google Scholar 

  19. Schofield, J.P. & Caskey, C.T. Non-viral approaches to gene therapy. Br. Med. Bull. 51, 56– 71 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Aihara, H. & Miyazaki, J. Gene transfer into muscle by electroporation in. Nat. Biotechnol. 16, 867– 870 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Alila, H. et al. A. Expression of biologically active human insulin-like growth factor-I following intramuscular injection of a formulated plasmid in rats. Hum. Gene Ther. 8, 1785–1795 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  22. Anwer, K. et al. Systemic effect of human growth hormone after intramuscular injection of a single dose of a muscle-specific gene medicine. Hum. Gene Ther . 9, 659–670 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  23. Mumper, R.J. et al. Polyvinyl derivatives as novel interactive polymers for controlled gene delivery to muscle. Pharm. Res. 13, 701–709 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. Mumper, R.J. et al. Protective interactive noncondensing (PINC) polymers for enhanced plasmid distribution and expression in rat skeletal muscle. J Controlled Release 52, 191–203 ( 1998).

    Article  CAS  Google Scholar 

  25. Weidner, N., Semple, J.P., Welch, W.R. & Folkman, J. Tumor angiogenesis and metastasis—correlation in invasive breast carcinoma. N. Engl. J. Med. 324, 1– 8 (1991).

    Article  CAS  PubMed  Google Scholar 

  26. Kenyon, B.M. et al. A model of angiogenesis in the mouse cornea. Invest. Ophthalmol. Vis. Sci. 37, 1625–1632 (1996).

    CAS  PubMed  Google Scholar 

  27. Kerbel, R.S. A cancer therapy resistant to resistance. Nature 390 , 335–336 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Hanahan, D. A flanking attack on cancer. Nat. Med. 4, 13–14 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Folkman, J. Antiangiogenic gene therapy. Proc. Natl. Acad. Sci. USA 95, 9064–9066 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tanaka, T., Cao, Y., Folkman, J. & Fine, H.A. Viral vector-targeted antiangiogenic gene therapy utilizing an angiostatin complementary DNA. Cancer Res. 58, 3362–3369 (1998).

    CAS  PubMed  Google Scholar 

  31. Griscelli, F. et al. Angiostatin gene transfer: inhibition of tumor growth in vivo by blockage of endothelial cell proliferation associated with a mitosis arrest. Proc. Natl. Acad. Sci. USA 95, 6367– 6372 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kong, H.L. & Crystal, R.G. Gene therapy strategies for tumor antiangiogenesis. J. Natl. Cancer Inst. 90, 273–286 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Kong, H.L. et al. Regional suppression of tumor growth by in vivo transfer of a cDNA encoding a secreted form of the extracellular domain of the flt-1 vascular endothelial growth factor receptor. Hum. Gene Ther. 9, 823–833 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Lin, P. et al. Antiangiogenic gene therapy targeting the endothelium-specific receptor tyrosine kinase Tie2. Proc. Natl. Acad. Sci. USA 95, 8829–8834 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li, H. et al. Adenovirus-mediated delivery of a uPA/uPAR antagonist suppresses angiogenesis-dependent tumor growth and dissemination in mice. Gene Ther. 5, 1105–1113 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Anderson, W.F. Human gene therapy. Nature 392, 25– 30 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Rolland, A.P. From genes to gene medicines: recent advances in nonviral gene delivery. Crit. Rev. Ther. Drug Carrier Syst. 15, 143– 198 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Karel Petrak, Michael Fons, Jeff Nordstrom, Federica Pericle, and Norman Hardman for helpful discussion and critical review of the manuscript; and the Department of Integrated Manufacturing and Quality Control for supplying the plasmids.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wang Min.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blezinger, P., Wang, J., Gondo, M. et al. Systemic inhibition of tumor growth and tumor metastases by intramuscular administration of the endostatin gene. Nat Biotechnol 17, 343–348 (1999). https://doi.org/10.1038/7895

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/7895

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing