Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Radioactive labeling of recombinant antibody fragments by phosphorylation using human casein kinase II and [γ-32P]-ATP

Abstract

A wide range of antibody fragments can be expressed in bacteria and detected immunochemically via peptide tags. Using specially designed tags, we have developed a strategy for radiolabeling antibody fragments secreted from bacteria. Tagged antibody fragments were secreted either into the bacterial periplasm or the culture medium. The tag was not subject to proteolysis either in the broth or in human plasma. After affinity purification the antibody fragments were phosphorylated with [γ-32P]ATP and casein kinase II. The labeled fragments were used in a gel band-shift assay to measure antigen binding affinities. In contrast to non site-specific methods such as radioiodination, antibodies labeled with casein kinase II retain full immunoreactivity. Radioactively phosphorylated antibody fragments may have many other applications, including radioimmunoassays and radioimmunotherapy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Skerra, A. and Plückthün, A. 1988. Assembly of a functional immunoglobulin Fv fragment in Escherichia coli . Science 240: 1038–1041.

    Article  CAS  PubMed  Google Scholar 

  2. Better, M., Chang, C.P., Robinson, R.R., and Horwitz, A.H. 1988. Escherichia coli secretion of active chimeric antibody fragment. Science 240: 1041–1043.

    Article  CAS  PubMed  Google Scholar 

  3. Glockshuber, R., Malia, M., Pfitzinger, I., and Plückthün, A. 1990. A comparison of strategies to stabilize immunoglobulin Fv-fragments. Biochemistry 29: 1362–1367.

    Article  CAS  PubMed  Google Scholar 

  4. Ward, E.S., Güssow, D., Griffiths, A.D., Jones, P.T., and Winter, G. 1989. Binding activity of a repertoire of single immunoglobulin variable domains secreted from Escherichia coli . Nature. 341: 544–546.

    Article  CAS  PubMed  Google Scholar 

  5. Huse, W.D., Sastry, L., Iverson, S.A., Kang, A.S., Alting, M.M., Burton, D.R., Benkovic, S.J., and Lerner, R.A. 1989. Generation of a large combinatorial library of the immunoglobulin repertoire in phage lambda. Science 246: 1275–1281.

    Article  CAS  PubMed  Google Scholar 

  6. Skerra, A., Pfitzinger, I., and Plückthun, A. 1991. The functional expression of antibody Fv fragments in Escherichia coli: improved vectors and a generally applicable purification technique. Bio/Technology 9: 273–278.

    CAS  Google Scholar 

  7. Schmidt, T.G.M. and Skerra, A. 1993. The random peptide library-assisted engineering of a C-terminal affinity peptide, useful for the detection and purification of a functional Ig Fv fragment. Protein Engineering 6: 109–122.

    Article  CAS  PubMed  Google Scholar 

  8. Sawyer, J.R., Tucker, P.W., and Blattner, F.R. 1992. Metal binding chimeric antibodies expressed in Escherichia coli . Proc. Natl. Acad. Sci. USA 89: 9754–9758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Brègerère, F., Schwartz, J., and Bedouelle, H. 1994. Bifunctional hybrids between the variable domains of an immunoglobulin and the maltose-binding protein of Escherichia coli: production, purification and antigen binding. Protein Engineering 7: 271–280.

    Google Scholar 

  10. Neri, D., de Lalla, C., Petrul, H., Neri, P., and Winter, G. 1995. Calmodulin as a versatile tag for antibody fragments. Bio/Technology 13: 373–377.

    CAS  Google Scholar 

  11. Neuberger, M., Williams, G.T., and Fox, R.O. 1984. Recombinant antibodies possessing novel effector functions. Nature 312: 604–608.

    Article  CAS  PubMed  Google Scholar 

  12. Wels, W., Harwerth, I.M., Zwickl, M., Hardman, N., Groner, B., and Hynes, N.E., 1992. ruction, bacterial expression and characterization of a bifunctional single-chain antibody-phosphatase fusion protein targeted to the human erbB2 receptor. Bio/Technology 10: 1128–1132.

    CAS  Google Scholar 

  13. Britton, K.E., Mather, S.J., and Granowska, M. 1991. Radiolabeled monoclonal antibodies in oncology. Part III. Radioimmunotherapy. Nucl. Med. Commun. 12: 333–347.

    Article  CAS  PubMed  Google Scholar 

  14. Band, H.A., Creighton, A.M., Britton, K.E., Long, J., Bartram, C., and Granowska, M. 1995. 32P-labeled antibodies for radioimmunotherapy: a review of recent developments and a preliminary report of the first Phase I studies. Tumor Targeting 1: 85–92.

    CAS  Google Scholar 

  15. Foxwell, B.M.J., Band, H.A., Long, J., Jeffrey, W.A., Snook, D., Thorpe, P.E., Watson, G., Parker, P.J., Epenetos, A.A., and Creighton, A.M. 1988. Conjugation of monoclonal antibodies to synthetic peptide substrates for protein kinase: a method for labeling antibodies with 32P. Br. J. Cancer 57: 489–493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li, B.L., Langer, J.A., Schwartz, B., and Pestka, S. 1989. Creation of phosphorylation sites in proteins: construction of a phosphorylatable human interferon α. Proc. Natl. Acad. Sci. USA 86: 558–562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhao, X.X., Li, B.L., Langer, J.A., Van Riper, G., and Petska, S. 1989. Construction and phosphorylation of a fusion protein Hu-IFN-αA/γ. Anal. Biochem. 178: 342–347.

    Article  CAS  PubMed  Google Scholar 

  18. Wang, P., Izotova, L., Mariano, T.M., Donnelly, R.J., and Petska, S. 1994. Construction and activity of phosphorylatable human interferon-αB2 and inter-feron-αA/γ. J. Interferon Res. 14: 41–46.

    Article  PubMed  Google Scholar 

  19. Several patent applications on phosphorylatable antibodies have been reported: for example EPO Patent Application No. 89311108.8 and UK Patent Applications Nos. 9501940.2, 9509984.2, 9518645.8.

  20. Marin, O., Meggio, F., Marchiori, F., Borin, G., and Pinna, L.A. 1986. Site-specificity of casein kinase 2 (TS) from rat liver cytosol. A study with model peptide substrates. Eur. J. Biochem. 160: 239–244.

    Article  CAS  PubMed  Google Scholar 

  21. Kuenzel, E.A., Mulligan, J.A., Sommercorn, J., and Krebs, E.G. 1987. Substrates specificity determinants for casein kinase 2 as deduced from studies with synthetic peptides. J. Biol. Chem. 262: 9136–9140.

    CAS  PubMed  Google Scholar 

  22. Hopp, T.P., Prockett, K.S., Price, V.L., Libby, R.T., March, C.J., Cerretti, D.P., Urdal, D.L., and Conlon, P.J. 1988. A short polypeptide marker sequence for recombinant protein identification and purification. Bio/Technology 6: 1204–1210.

    Article  CAS  Google Scholar 

  23. McCafferty, J., Griffiths, A.D., Winter, G., and Chiswell, D.J. 1990. Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348: 552–554.

    Article  CAS  PubMed  Google Scholar 

  24. Neri, D., Momo, M., Prospero, T., and Winter, G. 1995. High-affinity antigen binding by chelating recombinant antibodies (CRAbs). J. Mol. Biol. 246: 367–373.

    Article  CAS  PubMed  Google Scholar 

  25. Munro, S. and Pelham, H.R.B. 1986. Hsp-like protein in the ER: identity with the 78 kD glucose regulated protein and immunoglobulin heavy chain binding protein. Cell 46: 291–300.

    Article  CAS  PubMed  Google Scholar 

  26. Jönsson, U., Fägerstam, L., Ivarsson, B., Johnsson, B., Karlsson, R., Lundh, K., Löfås, S., Persson, B., Roos, H., Rönnberg, I., Sjölander, S., Stenberg, E., Ståhlberg Urbaniczky, C., Östlin, H., and Malmqvist, M. 1991. Real-time biospe-cific interaction analysis using surface plasmon resonance and a sensor chip technology. BioTechniques 11: 620–627.

    PubMed  Google Scholar 

  27. Chester, K.A., Begent, R.H., Robson, L., Keep, P., Pedley, R.B., Boden, J.A., Boxer, G., Green, A., Winter, G., Cochet, O., and Hawkins, R.E. 1994. Phage libraries for generation of clinically useful antibodies. Lancet 343: 455–456.

    Article  CAS  PubMed  Google Scholar 

  28. Pinna, L.A. 1990. Biochim. Biophys. Acta 1054: 267–284.

    Article  CAS  PubMed  Google Scholar 

  29. Grandowski, N., Boldyreff, B., and Issinger, O.-G. 1991. Isolation and characterisation of recombinant human casein kinase II subunits α and β from bacteria. Eur. J. Biochem. 198: 25–30.

    Article  Google Scholar 

  30. Filhol, O., Cochet, C., Wedegaertner, P., Gill, G.N., and Chambaz, E.M. 1991. Coexpression of both α and β subunits is required for assembly of regulated casin kinase II. Biochemistry 30: 11133–11140.

    Article  CAS  PubMed  Google Scholar 

  31. Takio, K., Kuenzel, E.A., Walsh, K.A., and Krebs, E.G. 1987. Amino acid sequence of the β-subunit of bovine lung casein kinase II. Proc. Natl. Acad. Sci. USA 84: 4851–4855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kam-Morgan, L.N.W., Smith-Gill, S.J., Taylor, M.G., Zhang, L., Wilson, A.C., and Kirsch, J.F. 1993. High-resolution mapping of the HyHEL-10 epitope of chicken lysozyme by site-directed mutagenesis. Proc. Natl. Acad. Sci. USA 90: 3958–3962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Holliger, P., Prospero, T., and Winter, G. 1993. “Diabodies”: small bivalent and bispecific antibody fragments. Proc. Natl. Acad. Sci. USA 90: 6444–6448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Brissinck, J., Demanet, C., Moser, M., Oberdan, L., and Thielemans, K. 1991. Treatment of mice bearing BCL1 lymphoma with bispecific antibodies. J. Immunol. 147: 4019–4026.

    CAS  PubMed  Google Scholar 

  35. Leung, S.O., Karacay, H., Losman, M.J., Griffiths, G.L., Goldenberg, D.M., and Hansen, Hans.J. 1995. Bacterial expression of a kemptide fusion protein facilitates 32P labeling of a humanized, anti-carcinoembryonic antigen (hMN-14) antibody fragment. Cancer Res. [Suppl.] 55: 5968–5972.

    Google Scholar 

  36. Fried, M., and Crothers, D.M. 1981. Equilibria and kinetics of lac repressor-operator interactions by polyacrylamide gel electrophoresis. Nucleic Acids Res. 9: 6505–6525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Garner, M.M., and Revzin, A. 1981. A gel electrophoresis method for quantifying the binding of proteins to specific DNA regions: applications to components of the Escherichia colilactose operon regulatory system. Nucleic Acids Res. 9: 3047–3060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Carr, D.W., and Scott, J.D. 1992. Blotting and band-shifting: techniques for studying protein-protein interactions. Trends Biochem. Sci. 17: 246–250.

    Article  CAS  PubMed  Google Scholar 

  39. Neri, D., Prospero, T., Petrul, H., Winter, G., Browne, M., and Vanderpant, L. 1996. A multi-purpose high sensitivity luminescence analyser (LUANA): use in gel-electrophoresis. BioTechniques. In press.

  40. Rashidbaigi, A., Hung, H.F., and Petska, S. 1985. Characterization of Receptors for immune interferon in U937 cells with 32P-labeled human recombinant immune interferon. J. Biol. Chem. 260: 8514–8519.

    CAS  PubMed  Google Scholar 

  41. Schreiber, G., and Fersht, A. 1993. Interaction of barnase with its polypeptide inhibitor barnase studied by protein engineering. Biochemistry 32: 5145–5150.

    Article  CAS  PubMed  Google Scholar 

  42. Sambrook, J., Fritsch, E.R., and Maniatis, T. 1990. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  43. Figini, M., Marks, J.D., Winter, G., and Griffiths, A.D. 1994. In vitro assembly of repertoires of antibody chains on the surface of phage by renaturation. J. Mol. Biol. 239: 68–78.

    Article  CAS  PubMed  Google Scholar 

  44. Hoogenboom, H.R., Griffiths, A.D., Johnson, K.S., Chiswell, D.J., Hudson, P., and Winter, G. 1991. Multi-subunit proteins on the surface of filamentous phage: methodologies for displaying antibody (Fab) heavy and light chains. Nucl. Acids Res. 19: 4133–4137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lavoie, T.B., Drohan, W.N., and Smith-Gill, S.J. 1992. Experimental analysis by site-directed mutagenesis of somatic mutation effects on affinity and fine specificity in antibodies specific for lysozyme. J. Immunol. 148: 503–513.

    CAS  PubMed  Google Scholar 

  46. Clackson, T., Hoogenboom, H.R., Griffiths, A.D., and Winter, G. 1991. Making antibody fragments using phage display libraries. Nature 352: 624–628.

    Article  CAS  PubMed  Google Scholar 

  47. Gibson, T.J. 1984. Studies on the Epstein-Barr virus genome. Ph.D. Thesis, University of Cambridge, UK.

  48. Marais, R.M., Hsuan, J.J., Mc Guigan, C., Wynne, J., and Treisman, R. 1992. Casein kinase II phosphorylation increases the rate of serum response factor-binding site exchange. EMBO J. 11: 97–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neri, D., Petrul, H., Winter, G. et al. Radioactive labeling of recombinant antibody fragments by phosphorylation using human casein kinase II and [γ-32P]-ATP. Nat Biotechnol 14, 485–490 (1996). https://doi.org/10.1038/nbt0496-485

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0496-485

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing