Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Directed evolution of a para-nitrobenzyl esterase for aqueous-organic solvents

Abstract

Through sequential generations of random mutagenesis and screening, we have directed the evolution of an esterase for deprotection of an antibiotic p-nitrobenzyl ester in aqueous-organic solvents. Because rapid screening directly on the desired antibiotic (loracarbef) nucleus p-nitrobenzyl ester was not feasible, the p-nitrophenyl ester was employed. Catalytic performance on the screening substrate was shown to reasonably mimic enzyme activity toward the desired ester. One p-nitrobenzyl esterase variant performs as well in 30% dimethylformamide as the wildtype enzyme in water, reflecting a 16-fold increase in esterase activity. Random pairwise gene recombination of two positive variants led to a further two-fold improvement in activity. Considering also the increased expression level achieved during these experiments, the net result of four sequential generations of random mutagenesis and the one recombination step is a 50–60-fold increase in total activity. Although the contributions of individual effective amino acid substitutions to enhanced activity are small (<2-fold increases), the accumulation of multiple mutations by directed evolution allows significant improvement of the biocatalyst for reactions on substrates and under conditions not already optimized in nature. The positions of the effective amino acid substitutions have been identified in a pNB esterase structural model developed based on its homology to acetylcholinesterase and triacylglycerol lipase. None appear to interact directly with the antibiotic substrate, further underscoring the difficulty of predicting their effects in a ‘rational’ design effort.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Chen, K. and Arnold, F. 1993. Tuning the activity of an enzyme for unusual environments: sequential random mutagenesis of subtilisin E for catalysis in dimethylformamide. Proc. Natl. Acad. Sci. USA 90: 5618–5622.

    Article  CAS  Google Scholar 

  2. You, L. and Arnold, F.H. 1995. Directed evolution of Subtilisin E in Bacillus subtilis to enhance total activity in aqueous dimethylformamide. Protein Eng. 9: 77–83.

    Article  Google Scholar 

  3. Brannon, D.R., Mabe, J.A., and Fukuda, D.S. 1976. De-esterification of cephalosporin para-nitrobenzyl esters by microbial enzymes. J. Antibiotics 29: 121–124.

    Article  CAS  Google Scholar 

  4. U.S. Patent 3,725,359 [1975].

  5. Zock, J., Cantwell, C., Swartling, J., Hodges, R., Pohl, T., Sutton, K., Rosteck Jr., P., McGilvray, D., and Queener, S. 1994. The Bacillus subtilis pnbA gene encoding p-nitrobenzyl esterase—cloning, sequence and high-level expression in Escherichia coli . Gene 151: 37–43.

    Article  CAS  Google Scholar 

  6. Cooper, R.D.G. 1992. The carbacephems: a new beta-lactam antibiotic class. Am. J. Med. 92 Supplement 6A: S2–S6.

    Article  Google Scholar 

  7. Arnold, F.H. 1996 Directed evolution: creating biocatalysts for the future. Chem. Eng. Science. In press.

  8. Stemmer, W.P.C. 1994. DNA shuffling by random fragmentation and reassembly: in vitro recombination for molecular evolution. Proc. Natl. Acad. Sci. USA 91: 10747–10751.

    Article  CAS  Google Scholar 

  9. Stemmer, W.P.C. 1994. Rapid evolution of a protein in vitro by DNA shuffling. Nature 370: 389–391.

    Article  CAS  Google Scholar 

  10. Crameri, A., Whitehorn, E., Tate, E., and Stemmer, W.P.C. Improved green fluorescent protein by molecular evolution using DNA shuffling. Nature Biotechnology 14: 315–319.

    Article  CAS  Google Scholar 

  11. Leung, D.W., Chen, E., and Goeddel, D.V. 1989. A method for random mutagenesis of a defined DNA segment using a modified polymerase chain reaction. Technique 1: 11–15.

    Google Scholar 

  12. Eckert, K.A. and Kunkel, T.A. 1991. DNA polymerase fidelity and the polymerase chain reaction. PCR Methods Applic. 1: 17–24.

    Article  CAS  Google Scholar 

  13. Cadwell, R.C. and Joyce, G.F. 1992. Randomization of genes by PCR mutagenesis. PCR Methods Applic. 2: 28–33.

    Article  CAS  Google Scholar 

  14. Chen, K. and Arnold, F. 1991. Enzyme engineering for nonaqueous solvents: random mutagenesis to enhance activity of subtilisin E in polar organic media. Bio/Technology 9: 1073–1077.

    Article  CAS  Google Scholar 

  15. Moore 1996. PhD thesis, Cal. Inst. of Tech., Pasadena, CA.

  16. Pohlenz, H.D., Boidol, W., Schuttke, I., and Streber, W.R. 1992. Purification and properties of an arthrobacter-oxydans p52 carbamate hydrolase specific for the herbicide phenmedipham and nucleotide-sequence of the corresponding gene. J. Bacteriol. 174: 6600–6607.

    Article  CAS  Google Scholar 

  17. Sussman, J.L., Harel, M., Frolow, F., Oefner, C., Goldman, A., Toker, L., and Siliman, I. 1991. Atomic structure of acetylcholinesterase from Torpedo califor-nica: a prototypic acetylcholine-binding protein. Science 253: 872–879.

    Article  CAS  Google Scholar 

  18. Schrag, J.D. and Cygler, M. 1993. 1.8 angstroms refined structure of the lipase from Geotrichum candidum . J. Mol. Biol. 230: 575–591.

    Article  CAS  Google Scholar 

  19. Sali, A. and Blundell, T.L. 1993. Comparative modelling by satisfaction of spatial restraints. J. Mol. Biol. 234: 779–815.

    Article  CAS  Google Scholar 

  20. Sali, A. and Overington, J.P. 1994. Derivation of rules for comparative modeling from a database of protein structure alignments. Prot Sci. 3: 1582–1596.

    Article  CAS  Google Scholar 

  21. U.S.Patent Application No.07,739,2801.

  22. Sambrook, J., Fritsch, E.F., and Maniatis, T. 1989. pp. 1.82–1.84 in Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  23. Chen, Y., Usui, S., Queener, S.W., and Yu, C. 1995. Purification and properties of p-nitrobenzyl esterase from Bacillus subtilis . J. Ind. Micro. 15: 10–18.

    Article  Google Scholar 

  24. Jbilo, O., L'Hermite, Y., Talesa, V., Toutant, J.P., and Chatonnet, A. 1994. Acetylcholinesterase and butyrylcholinesterase expression in adult-rabbit tissues and during development. Eur. J. Biochem. 225: 115–124.

    Article  CAS  Google Scholar 

  25. Jbilo, O. and Chatonnet, A. 1990. Complete sequence of rabbit butyrylcholinesterase. Nucleic Acids Res. 18: 3990.

    Article  CAS  Google Scholar 

  26. Ozols, J. 1989. solation, properties, and the complete amino-acid sequence of a 2nd form of 60-kda glycoprotein esterase—orientation of the 60-kda proteins in the microsomal membrane. J. Biol. Chem. 264: 12533–12545.

    CAS  PubMed  Google Scholar 

  27. Bomblies, L., Biegelmann, E., Doering, V., Gerisch, G., Krafft-Czepa, H., Noegel, A.A., Schleicher, M., and Humbel, B.M. 1990. Membrane-enclosed crystals in Dictyostelium discoideum cells, consisting of developmentally regulated proteins with sequence similarities to known esterases. J. Cell Biol. 110: 669–679.

    Article  CAS  Google Scholar 

  28. Hwang, C.-S. and Kolattukudy, P.E. 1993. Molecular cloning and sequencing of thioesterase B cDNA and stimulation of expression of the thioesterase B gene associated with hormonal induction of peroxisomal proliferation. J. Biol. Chem. 268: 14278–14284.

    CAS  PubMed  Google Scholar 

  29. Lorti, M., Grandori, R., Fusetti, F., Longhi, S., Brocca, S., Tramontano, A., and Alberghina, L. 1993. Cloning and analysis of Candida cylindracealipase sequences. Gene 124: 45–55.

    Article  Google Scholar 

  30. Kaiser, R., Erman, M., Duax, W.L., Ghosh, D., and Joernvall, H. 1994. Monomeric and dimeric forms of cholesterol esterase from Candida cylindracea . Primary structure, identity in peptide patterns, and additional microheterogeneity. FEBS Lett. 337: 123–127.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moore, J., Arnold, F. Directed evolution of a para-nitrobenzyl esterase for aqueous-organic solvents. Nat Biotechnol 14, 458–467 (1996). https://doi.org/10.1038/nbt0496-458

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0496-458

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing