Combinatorial Drug Discovery: Which Methods Will Produce the Greatest Value?

Abstract

Combinatorial strategies are important new approaches to drug discovery, and it seems quite likely that they will result in the discovery of interesting potential pharmaceutical. However, it is less clear whether combinatorial approaches will result in quantum advances in therapeutics. Nor is there general agreement about the factors most important in defining how combinatorial strategies will provide value to the discovery of lead and therapeutic compounds. In this review, we propose criteria that define the value of combinatorial strategies and categorize the various approaches by: (a) the type of chemical space to be searched, (b) the tactics employed to synthesize and screen libraries, and (c) the structures of individual molecules in libraries. We evaluate the strengths and weaknesses of the various strategies and suggest milestones that can help to track their success.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Spilker, B. 1989. Multinational Drug Companies: Issues in Drug Discovery and Development, Raven Press: New York.

  2. 2

    Gordon, E.M., Barrett, R.W., Dower, W.J., Fodor, S.P.A. and Gallop, M.A. 1994. Applications of combinatorial technologies to drug discovery. 2. Combinatorial organic synthesis, library screening strategies, and future directions. J. Med. Chem. 37: 1385–1401.

  3. 3

    Gallop, M.A, Barrett, R.W, Dower, W.J., Fodor, S.P.A., Gordon, E.M. 1994. Applications of combinatorial technologies to drug discovery. 1. Background and peptide combinatorial libraries. J. Med. Chem. 37: 1233–1251.

  4. 4

    Caporale, L.H. 1995. Chemical ecology: A view from the pharmaceutical industry. Proc. Natl. Acad. Sci. USA 92: 75–82.

  5. 5

    Liskamp, R.M.J 1994. Opportunities for new chemical libraries: Unnatural biopolymers and diversomers. ACIEE 33: 633–635.

  6. 6

    Janda,K.D. 1994. Tagged versus untagged libraries: Methods for the generation and screening of combinatorial chemical libraries. Proc. Natl. Acad. Sci. USA 91: 10779–10785.

  7. 7

    Bunin, B.A. and Ellman, J.A. 1992. A general and expedient method for the solid-phase synthesis of 1,4-benzodiazepine derivatives. J. Am. Chem. Soc. 114: 10997–10998.

  8. 8

    Moos, W.H. and Green, G.D. 1993. Recent advances in the generation of molecular diversity. Annual Reports in Medicinal Chemistry 28: 315–324.

  9. 9

    Ellington, A.D. 1994. Aptamers achieve the desired recognition. Current Biology 4: 427–429

  10. 10

    DeWitt, S.H., Kiely, J.S., Stankovic, C.J., Schroeder, M.C., Cody, D.M.R. and Pavia, M.R. 1993. “Diversomers”: An approach to nonpeptide, nonotigomeric chemical diversity. Proc. Natl. Acad. Sci. USA 9: 6909–6913.

  11. 11

    Bunin, B.A., Plunkett, M.J. and Ellman, J.A. 1994.The combinatorial synthesis and chemical and biological evaluation of a 1,4-benzodiazepine library. Proc. Natl. Acad. Sci. USA 91: 4708–4712.

  12. 12

    DeWitt, S.H., Schroeder, M.C., Stankovic, C.J, Strode, J.E. and Czarnik, A.W. 1994.DIVERSOMER technology: Solid phase synthesis, automation, and integration for the generation of chemical diversity. Drug Development Research 33: 116–124.

  13. 13

    Gordon, D.W., Steele, J. 1995.Reductive alkylation on a solid phase: synthesis of a piperazinodione combinatorial library. Bioorganic & Medicinal Chemistry Letters 5: 47–50.

  14. 14

    Kurth, M.J., Randall, L.A.A., Chen, C., Melander, C., Miler, R.B., McAlister, K., Reitz, G., Kang, R., Nakatsu, T. and Green, C. 1994. Library-based lead compound discovery: Antioxidants by an analogous synthesiside-convolutive assay strategy. J. Org. Chem. 59: 5862–5864.

  15. 15

    Backes, B.J. and Ellman, J.A. 1994. Carbon-carbon bond-forming methods on solid support. Utilization of Kenner's “safety-catch” linker. J. Am. Chem. Soc. 116: 11171–11172.

  16. 16

    Hogan, J.C., Jr. 1993. Inventor. Patent—Aminimide-containmg molecules and materials as molecular recognition agents. USA. World Patent Application 9401102.

  17. 17

    Hogan, J.C., Jr. 1994. Inventor. Patent—Novel oxazolone derivatives are useful for synthesizing new compounds and fabricated materials which are able to recognize biological receptors enzymes, genetic materials, etc. USA. World Patent Application 9400509.

  18. 18

    Pavia, M. 1994. Abstract presented at the CHI conference, “Exploiting Molecular Diversity,” January 23–25, San Diego, CA.

  19. 19

    Sucholeiki, I. 1994. Solid-phase photochemical C-S bond cleavage of thioethers—A new approach to the solid-phase production of non-peptide molecules. Tetrahedron Lett. 35: 7307–7310.

  20. 20

    Chabala, J.C. 1995. Abstract presented at the CHI conference, “Exploiting Molecular Diversity,” January 23–25, San Diego, CA. abstract

  21. 21

    Carell, T., Wintner, E.A. and Rebek, J., Jr. 1994. A solution-phase screening procedure for the isolation of active compounds from a library of molecules. Angew. Chem. Int. Ed. Engl. 33: 2061–2064.

  22. 22

    Carell, T., Wintner, E.A., Bashir-Hashemi, A. and Rebek, Jr. 1994. A novel procedure for the synthesis of libraries containing small organic molecules. Angew. Chem. Int. Ed. Engl. 33: 2059–2061.

  23. 23

    Chen, C., Ahlberg Randall, L.A., Miller, R.B., Jones, A.D. and Kurth, M.J. 1994. “Analogous” organic synthesis of small-compound libraries: Validation of combinatorial chemistry in small-molecule synthesis. J. Am. Chem. Soc. 116: 2661–2662.

  24. 24

    Chou,W.-C., Chen,L., Fang,J.-M. and Wong,C.-H. 1994. A new route to deoxythiosugars based on aldolases. J.Am. Chem. Soc. 116: 6191–6194.

  25. 25

    Henderson, I., Sharpless, K.B. and Wong, C.-H. 1994. Synthesis of carbohydrates via tandem use of the osmium-catalyzed asymmetric dihydroxy-lation and enzyme-catalyzed aldol addition reactions. J. Am. Chem. Soc. 116: 558–561.

  26. 26

    Kajimoto, T., Chen, L., Liu, K.K.-C. and Wong, C.-H. 1991. Palladium-mediated stereocontrolled reductive animation of azido sugars prepared from enzymatic aldol condensation: A general approach to the synthesis of deoxy aza sugars. J.Am. Chem. Soc. 113: 6678–6680.

  27. 27

    Kauffman, S. 1994. Protein mediated networks—Random chemistries. Ber. Bunsenges. Phys. Chem. 98: 1142–1147.

  28. 28

    Joyce, G.F. 1992. Directed molecular evolution. Scientific American 267: 90–97.

  29. 29

    Ellington, A.D. and Szostak, J.W. 1990. In vitro selection of RNA molecules that bind specific ligands. Nature 346: 818–822.

  30. 30

    Szostak, J.W. 1992. in vitro genetics. TIBS 17: 89–93.

  31. 31

    Tuerk, C. and Gold, L. 1990. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249: 505–510.

  32. 32

    Tuerk, C. and MacDougal-Waugh, S. 1993. In vitro evolution of functional nucleic acids: High-affinity RNA ligands of HIV-1 proteins. Gene 137: 33–39.

  33. 33

    Giver, L., Bartel, D.P., Zapp, M.L., Green, M.R. and Ellington, A.D. 1993. Selection and design of high-affinity RNA ligands for HIV-1 Rev. Gene 137: 19–24.

  34. 34

    Jenison, R.D., Gill, S.C., Pardi, A. and Polisky, B. 1994. High-resolution molecular discrimination by RNA. Science 263: 1425–1429.

  35. 35

    Bartel, D.P. and Szostak, J.W. 1993. Isolation of new ribozymes from a large pool of random sequences. Science 261: 1411–1418.

  36. 36

    Robertson, D.L. and Joyce, G.F. 1990. Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nature 344: 467–468.

  37. 37

    Pan, T. and Uhlenbeck, O.C. 1990. In vitro selection of RNAs that undergo autolytic cleavage with Pb2+. Biochemistry 31: 3887–3895.

  38. 38

    Tuerk, C., MacDougal, S. and Gold, L. 1992. RNA pseudoknots that inhibit human immunodeficiency virus Type 1 reverse transcriptase. Proc. Natl. Acad. Sci. 89: 6988–6922.

  39. 39

    Joyce, G.F. 1989. Amplifcation, mutation and selection of catalytic RNA. Gene 82: 83–87.

  40. 40

    Breaker, R.R. and Joyce, G.F. 1994. Combinatorial evolution of DNA molecules that cleave RNA. Chemistry and Biology 1: 223–299.

  41. 41

    Beutel, B.A. and Gold, L. 1992. In vitroevolution of intrinsically bent DNA. J. Mol. Biol. 228: 803–812.

  42. 42

    Ellington, A.D. and Szostak, J.W. 1992. Selection in vitro of single-stranded DNA molecules that fold into specific ligand-binding structures. Nature 355: 850–852.

  43. 43

    Wang, K.Y., McCurdy, S., Shea, R.G., Swaminathan, S. and Bolton, P.H. 1993. A DNA aptamer which binds to and inhibits thrombin exhibits a new structural motif for DNA. Biochemistry 32: 1899–1904.

  44. 44

    Griffin, L.C., Toole, J.J and Leung, L.L.K. 1993. The discovery and characterization of a novel nucleotide-based thrombin inhibitor. Gene 137: 25–31.

  45. 45

    Tsang, J. and Joyce, G.F. 1994. Evolutionary optimization of the catalytic properties of a DNA-cleaving ribozyme. Biochemistry 33: 5966–5973.

  46. 46

    Osuna, J., Flores, H. and Soberon, X. 1994. Microbial systems and directed evolution of protein activities. Critical Reviews in Microbiology 20: 107–116.

  47. 47

    Scott, J.K. and Craig, L. 1994. Random peptide libraries. Current Biology 5: 40–48.

  48. 48

    Blond-Elguindi, S., Cwirla, S.E., Dower, W.J., Lipshutz, R.J., Sprang, S.R., Sambrook, J.F. and Gething, M.-J.H. 1993. Affinity panning of a library of peptides displayed on bacteriophages reveals the binding specificity of BiP. Cell 75: 717–728.

  49. 49

    Dower, W.J. 1992. Phase power. Current Biology 2: 251–253.

  50. 50

    Clackson, T. and Wells, J.A. 1994. In vitro selection from protein and peptide libraries. TIBTECH 173–184.

  51. 51

    Scott, J.K. and Smith, G.P. 1990. Searching for peptide ligands with an epiiope library. Science 249: 386–390.

  52. 52

    Clackson, T., Hoogenboom, H.R., Griffiths, A.D. and Winter, G. 1991. Making antibody fragments using phage display libraries. Nature 352: 624–628.

  53. 53

    Huizenga, D.E. and Szostak, J.W. 1995. A DNA Aptamer that binds adenosine and ADP. Biochemistry 34: 656–665.

  54. 54

    Dehua, P., Ulrich, H.D. and Schultz, P.G. 1991. A combinatorial approach toward DNA recognition. Science 253: 1408–1411.

  55. 55

    Mandelkow, E.-M. and Mandelkow, E. 1993. Tau as a marker for Alzheimer's disease. TIBS 18: 480–483.

  56. 56

    Tsai, D.E., Kenan, D.J. and Keene, J.D. 1992. In vitro selection of an RNA epitope immunologically cross-reactive with a peptide. Proc. Natl. Acad. Sci. USA 89: 8864–8868.

  57. 57

    Schneider, D., Tuerk, C. and Gold, L. 1992. Selection of high affinity RNA ligands to the bacteriophage R17 coat protein. J. Mol. Biol. 228: 862–869.

  58. 58

    Bock, L.C., Graffin, L.C., Latham, J.A., Vermaas, E.H. and Toole, J.J. 1992. Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature 355: 564–566.

  59. 59

    Chen, H., Gold, L. 1994. Selection of high-affinity RNA ligands to reverse transcriptase: Inhibition of cDNA synthesis and RNase H activity. Biochemistry 33: 8746–8756

  60. 60

    Lorsch, J.R. and Szostak, J.W. 1994. In vitro selection of RNA aptamers specific for cyanocobalamin. Biochemistry 33: 973–982

  61. 61

    Kazmierski, W.M. 1994 Peptidomimetics and small-molecule drug design: towards improved bioavailability and in vivo stability. Trends in Biotechnology 12: 213–218

  62. 62

    Nicolaou, K.C., Salvino, J.M., Raynor, K., Pietranico, S., Reisine, T., Freidinger, R.M. and Hirschmann, R. 1989. Design and synthesis of a peptidomimetic employing β-D-glucose for scaffolding. Peptides 10: 881–884

  63. 63

    Hirschmann, R., Speregeler, P.A., Kawasaki, T., Leahy, J.W., Shakespeare, W.C. and Smith, A.B 1993. The versatile steroid nucleus: Design and synthesis of a peptidomimetic employing this novel scaffold. Tetrahedron 49: 3665–3676 III.

  64. 64

    Usman, N., Beigelman, L., Draper, K., Gonzalez, C., Karpeisky, A., Modak, A., Matulic-Adamic, J., DiRenzo, A., Haeberli, P., Tracz, D., Grimm, S., Wincott, F. and McSwiggen, J. 1994. Chemical modification of hammerhead ribozymes: activity and nuclease resistance. Nucleic Acids Symposium Series 31: 163–164

  65. 65

    Goodchild, J. 1992. Enhancement of ribozyme catalytic activity by a contiguous oligodeoxynucleotide (facilitator) and by 2′-O-methylation. Nucleic Acids Res. 20: 4607–4612

  66. 66

    Lathaam, J.A., Johnson, R. and Toole, J.J. 1994. The application of a modified nucleotide hi aptamer selection: Novel thrombin aptamers containing 5-(l-pentynyl)-2′-deoxyuridine. Nucleic Acids Res 22: 2817–2822

  67. 67

    Pieken, W.A., Olsen, D.B, Benseler, F., Aurup, H. and Eckstein, F. 1991. Kinetic characterization of ribonuclease-resistant 2′-modified hammerhead ribozymes. Science 253: 314–317

  68. 68

    Olsen, D.B., Benseler, F., Aurup, H., Pieken, W.A. and Eckstein, F., 1991. Study of a hammerhead ribozyme containing 2′-modified adenosine residues. Biochemistry 30: 9735–9741

  69. 69

    Heidenreich, O., Benseler, Fahrenholz, A. and Eckstin, F. 1994. High activity and stability of hammerhead ribozymes containing 2′-modified pyrimidine nucleosides and phosphorothioates. J. Biol. Chem. 269: 2131–2138

  70. 70

    Aurup, H., Tuschl, T., Benseler, F., Ludwig, J. and Eckstein, F. 1994. Oli-gonucleotide duplexes containing 2′-amino-2′-deoxycytidines: Thermal stability and chemical reactivity. Nucleic Acids Res 22: 20–24

  71. 71

    Aurup, H., Williams, D.M. and Eckstein, F. 1992. 2′-Fluoro-and 2′-amino-2′-deoxynucleoskle 5′-triphosphates as substrates for T7 RNA polymerase. Biochemistry 31: 9636–9641

  72. 72

    Lenstra, J.A., Erkens, J.H.F., Langeveld, J.G.A., Posthumus, W.P.A., Meloen, R.H., Gebauer, F., Correa, I., Enjuanes, L. and Stanley, K.K. 1992. Isolation of sequences from a random-sequence expression library mat mimic viral epitopes. J.Immunol.Methods 152: 149–157

  73. 73

    Christian, R.B., Zuckermann, R.N., Kerr, J.M., Wang, L. and Malcolm, B.A. 1992. Simplified methods for construction, assessment and rapid screening of peptide libraries in bacteriophage. J. Mol. Biol. 227: 711–718

  74. 74

    Dedman, J.R., Kaetzel, M.A., Chang chan, H., Nelson, D.J. and Jamieson, G.A. 1993. Selection of targeted biological modifiers from a bacteriophage library of random peptides. The identification of novel calmodulin regulatory peptides. J. Biol. Chem. 268: 23025–23030

  75. 75

    Barbas, C.F., Bain, J.D., Hoekstra, D.M. and Learner, R.A. 1992. Semisyn-thetk combinatorial antibody libraries: A chemical solution to the diversity problem. Proc. Nad. Acad. Sci. 89: 4457–4461

  76. 76

    Zebedee, S.L., Barbas, C.F., Hom, Y., Caothein, R.H., Graff, R., DeGraw, J., Pyati, J., Lapolla, R., Burton, D.R,, Lerner, R.A. and Thornton, G.B. 1992. Semisyn-thetk combinatorial antibody libraries: A chemical solution to the diversity problem. Proc. Nad. Acad. Sci. 89: 3175–3179

  77. 77

    Gram, H., Marconi, L., Barbas, C.F., Collet, T.A., Lerner, R.A and Kang, A.S. 1992. In vitro selection and affinity maturation of antibodies from a naive combinatorial immunoglobulin library. Pro. Natl. Acad. Sci. USA 89: 3576–3580

  78. 78

    Collect, T.A, Roben, P., O'Kennedy, R., Barbas, C.F., Burton, D.R. and Learner, R.A 1992. A binary plasmid system for shuffling combinatorial antibody libraries. Proc. Nad. Acad. Sci. USA 89: 10026–10030

  79. 79

    Munir, K.M., French, D.C., Loeb, L.A. 1993. Thymidine kinase mutants obtained by random sequence selection. Proc. Nad. Acad. Sci. USA 90: 4012–4016

  80. 80

    Burton, D.R. 1993. Monoclonal antibodies from combinatorial libraries. Accounts Chem. Res. 26: 405–411

  81. 81

    Posner, B., Smiley, J., Lee, I. and Benkovic, S. 1994. Catalytic antibodies: perusing combinatorial libraries. TIBS 19: 145–150

  82. 82

    Barbas, C.F., III, Amberg, W., Simoncsits, A., Jones, T.M. and Lerner, R.A. 1993. Selection of human anti-hapten antibodies from semisynthetic libraries. Gene 137: 57–62

  83. 83

    Eigen, M., Biebricher, C.K. and Gebinoga, M. 1991. The Hypercycle. Coupling of RNA and protein biosynthesis in the infection cycle of an RNA bacteriophage. Biochemistry 30: 11005–11018

  84. 84

    Friedman, A.D., Triezenberg, S.J. and McKnight, S.L. 1988. Expression of a truncated viral trans-activator selectively impedes lytic infection by its cognate virus. Nature 335: 452–454

  85. 85

    Holzmayer, T.A., Pestov, D.G. and Roninson, I.B. 1992. Isolation of dominant negative mutants and inhibitory antisense RNA sequences by expression selection of random DNA fragments. Nucl. Acids Res. 20: 711–717

  86. 86

    Dube, D.K., Black, M.E., Munir, K.M. and Loeb, L.A. 1993. Selection of new biologically active molecules from random nucleotide sequences. Gene 137: 41–47

  87. 87

    Janda, K.D., Lo, C.-H.L,, Li, T., Barbas, C.F., III, Wiraching, P., Lerner, R.A. 1994. Direct selection for a catalytic mechanism from combinatorial antibody libraries. Proc. Nail. Acad. Sci. USA 91: 2532–2536

  88. 88

    Brossalina, E. & Toulm, J.-J. 1993. A DNA hairpin as a target for antisense oligonucleotides. J. Am. Chem. Soc. 115: 796–797

  89. 89

    Mattheakis, L.C., Bhatt, R.R. and Dower, W.J. 1994. An in vitro polysome display system for identifying ligands from very large peptide libraries. Proc. Natl. Acad. Sci. USA 91: 9022–9026

  90. 90

    Noonberg, S.B., Scott, G.K., Garovoy, M.R., Benz, C.C. and Hunt, C.A. 1994. In vivo generation of highly abundant sequence-specific oligonucleotides for antisense and triplex gene regulation. Nucl. Acids Res. 22: 2830–2836

  91. 91

    Deiss, L.P. and Kimchi, A. 1991. A genetic tool used to identify thioredoxin as a mediator of a growth inhibitory signal. Science 252: 117–120

  92. 92

    Holzmayer, T.A., Pestov, D.G. and Roninson, I.B. 1992. Isolation of dominant negative mutants and inhibitory antisense RNA sequences by expression selection of random DNA fragments. Nucl. Acids Res. 20: 711–717

  93. 93

    Geysen, H.M. and Mason, T.J. 1993. Screening chemically synthesized peptide libraries for biologically-relevant molecules. Bioorganic & Medicinal Chemistry Letters 3: 397–404

  94. 94

    Erb, E., Janda, K.D. and Brenner, S. 1994. Recursive deconvolution of combinatorial chemical libraries. Proc. Natl. Acad. Sci. USA 91: 11422–11426

  95. 95

    Houghten, R.A., Pinilla, C., Blondelle, S.E., Appel, J.R., Dooley, C.T. and Cuervo, J.H. 1991. Generation and use of synthetic peptide combinatorial libraries for basic research and drug discovery. Nature 354: 84–86

  96. 96

    Eichler, J. and Houghten, R.A. 1993. Identification of substrate-analog tryp-sin inhibitors through the screening of synthetic peptide combinatorial libraries. Biochemistry 32: 11035–11041

  97. 97

    Houghten, R.A., Appel, J.R., Blondelle, S.E., Cuervo, J.H., Dooley, C.T. and Pinilla, C. 1992. The use of synthetic peptide combinatorial libraries for the identification of bioactive peptides. Peptide Research 5: 351–358

  98. 98

    Ecker, D.J., Vickers, T.A., Hanecak, R., Driver, V. and Anderson, K. 1993. Rational screening of oligonucleotide combinatorial libraries for drug discovery. Nucl. Acids Res. 21: 1853–1856

  99. 99

    Geysen, H.M., Rodda, S.J. and Mason, T.J., 1986. A priori delineation of a peptide which mimics a discontinuous antigenic determinant. Molecular Immunology 23: 709–715

  100. 100

    Salmon, S.E., Lam, K.S., Lebl, M., Kandola, A., Khattri, P.S., Wade, S., Patek, M., Kocis, P., Krchnák, V., Thorpe, D. and Felder, S. 1993. Discovery of biologically active peptides in random libraries: Solution-phase testing after staged orthogonal release from resin beads. Proc. Natl. Acad. Sci. USA 90: 11708–11712

  101. 101

    Lebl, M., Patek, M., Kocis, P., Krchnák, V., Hruby, V.J., Salmon, S.E. and Lam, K.S. 1993. Multiple release of equimolar amounts of peptides from a polymeric carrier using orthogonal linkage-cleavage chemistry. Int. J. Pept. Protein Res. 41: 201–203

  102. 102

    Fodor, S., Read, J.L., Pirrung, M.C., Stryer, L., Lu, A.T. and Solas, D. 1991. Light-directed, spatially addressable parallel chemical synthesis. Scienc 251: 767–773

  103. 103

    Maskos, U., Southern, E.M., 1992. Parallel analysis of oligodeoxynbonu-deotide (oligonucleotide) interactions. I. Analysis of factors influencing oligonucleotide duplex formation. Nucl.Acids Res. 20: 1675–1678

  104. 104

    Pease, A.C., Solas, D., Sullivan, E.J, Cronin, M.T., Holmes, C.P. and Fodor, S.P.A 1994. Light-generated oligonucleotide arrays for rapid DNA sequence analysis. Proc. Nad. Acad. Sci. USA 91: 5022–5026

  105. 105

    Maskos, U. and Southern, E.M. 1993. A study of oligonucleotide reassociation using large arrays of oligonucleotides synthesised on a glass support. Nucleic Acids Res. 21: 4663–4669

  106. 106

    Maskos, U. and Southern, E.M., 1992. Oligonucleotide hybridisations on glass supports: A novel linker for oligonucleotide synthesis and hybridisation properties of oligonucleotides synthesised in situ. Nucl. Acids Res. 20: 1679–1684

  107. 107

    Matson, R.S., Rampal, J., Pentoney, S.L.,Jr., Anderson, P.D. and Coassin, P. 1995. Biopolymer synthesis on polypropylene supports: Oligonucleotide arrays. Anal. Biochem. 224: 110–116

  108. 108

    Maeji, N.J., Gordon, G., Bray, A.M. and Geysen, H.M. 1992. Simultaneous multiple synthesis of peptide-carrier conjugates. J. of Immunological Methods 146: 83–90

  109. 109

    Cooley, C.T., Chung, N.N., Wilkes, B.C., Schiller, P.W., Bidlack, J.M., Pasternak, G.W. and Houghten, R.A. 1994. An all D-amino acid opioid peptide with central analgesic activity from a combinatorial library. Science 266: 2019–2022

  110. 110

    Lam, K.S., Lebl, M., Krchnak, V., Wade, S., Abdul-Latif, F., Ferguson, R., Cuzzocrea, C. and Wertman, K. 1993. Discovery of D-amino-acid-containing ligands with selectide technology. Gene 137: 13–16

  111. 111

    Hagihara, M., Anthony, N.J., Stout, T.J., Clardy, J. and Schreiber, S.L. 1992. Vinylogous Polypeptides: An alternative peptide backbone. J. Am.Chem. Soc. 114: 6568–6570

  112. 112

    Eichler, J., Lucka, A.W. and Houghten, R.A. 1994. Cyclic peptide template combinatorial libraries: Synthesis and identification of chymotrypsin inhibitors. Peptide Res. 7: 300–307

  113. 113

    Ostresh, J.M., Husar, G.M, Blondelle, S.E., Dörner, B., Weber, P.A. and Houghten, R.A. 1994. “Libraries from libraries”: Chemical transformation of combinatorial libraries to extend the range and repertoire of chemical diversity. Proc. Nad. Acad. Sci. USA 91: 11138–11142

  114. 114

    Simon, R.J., Kania, R.S., Zuckermann, R.N., Huebner, V.D., Jewell, D.A., Banville, S., Ng, S., Wang, L., Rosenberg, S., Marlowe, C.K., Spellmeyer, D.C., Tan, R., Frankel, A.D., Santi, D.V., Cohen, F.E. and Bartlett, P.A.,1992. Peptoids: A modular approach to drug discovery. Proc. Natl. Acad. Sci. USA 89: 9367–9371

  115. 115

    Zuckermann, R.N., Martin, E.J., Spellmeyer, D.C., Stauber, G.B., Shoe-maker, K.R., Kerr, J.M., Figliozzi, G.M., Goff, D.A., Siani, M.A., Simon, R.J., Banville, S.C., Brown, E.G., Wang, L., Richter, L.S. and Moos, W.H. 1994. Discovery of nanomolar ligands for 7-transmembrane G-protein-coupled receptors from a diverse N-(substituted)glycine peptoid library. J. Med. Chem. 37: 2678–2685

  116. 116

    Egholm, M., Buchardt, O., Christensen, L., Behrens, C., Freier, S.M., Driver, D.A., Berg, R.H., Kim, S.K., Norden, B. and Nielsen, P.E. 1993. PNA hybridizes to complementary oligonucleotides obeying the Watson-Crick hydrogen-bonding rules. Nature 365: 566–568

  117. 117

    Cho, C.Y., Moran, E.J., Cherry, S.R., Stephans, J.C., Fodor, S.P.A., Adams, C.L., Sundaram, A., Jacobs, J.W. and Schultz, P.G. 1993. An unnatural biopolymer. Science 261: 1303–1305

  118. 118

    Smith, A.B.III, Keenan, T.P., Holcomb, R.C., Sprengler, P.A., Guzman, M.C., Wood, J.L., Carroll, P.J. and Hirschmann, R. 1992. Design, synthesis and crystal structure of a pyrrolinone-based peptidomimetic possessing the conformation of a β-strand: Potential applications to the design of novel inhibitors of proteolytic enzymes. J. Am. Chem. Soc. 114: 10672–10674

  119. 119

    Stirchak, E.P., Summerton, J.E. and Weller, D.D. 1987. Uncharged stereoregular nucleic acid analogs. Synthesis of a cytosine-containing oligomer with carbamate internucleotide linkages. J. Org. Chem. 52: 4202–4206

  120. 120

    Stichak, E.P., Summerton, J.E. and Weller, D.D. 1989. Uncharged stereoregular nucleic acid analogs: 2. Morpholino nucleoside oligomers with carbamate internucleotide linkages. Nucl. Acids Res. 17: 6129–6141

  121. 121

    Virgilio, A.A. and Eliman, J.A. 1994. Synthesis of β-turn mimetics II. J. Am. Chem. Soc. 114: 11580–11581

  122. 122

    Davis, P.W., Vickers, T.A., Wyatt, J.R., Lingardo, L., Acevedo, O., Debaets, E., Guinosso, C., Sanghvi, Y., Cook, P.D. and Ecker, D.E. 1995. Novel inhibitors of LTB4 and PLA2 discovered from novel combinatorial oligomer libraries. Submitted to J. Am. Chem. Soc

  123. 123

    Hebert, N., Davis, P.W., DeBaets, E.L. and Acevedo, O.L. 1994. Synthesis of N-substituted hydroxyprolinol phosphoramidites for the preparation of combinatorial libraries. Tetrahedron Lett. 35: 9509–9512

  124. 124

    Salmon, S.E., Lam, K.S., Felder, S., Yeoman, H., Schlessinger, J., Ullrich, A., Krchnak, V. and Lebl, M. 1994. One bead, one chemical compound: Use of the selectide process for anticancer drug discovery. Acta Oncologica 33: 137–131

  125. 125

    Burgess, K., Liaw, A.I. and Wang, N. 1994. Combinatorial technologies involving reiterative division/coupling/recombination: Statistical considerations. J. Med. Chem. 37: 2985–2987

  126. 126

    Blake, J. and Litzi-Davis, L. 1992. Evaluation of peptide libraries: An iterative strategy to analyze the reactivity of peptide mixtures with antibodies. Bioconjugate Chem. 3: 510–513

  127. 127

    Dooley, C.T., Hope, S. and Houghten, R.A. 1994. Rapid identification of novel opioid peptides from an N-acetylated synthetic combinatorial library. Regul. Pept. 54: 87–88

  128. 128

    Pinilla, C., Appel, J.R. and Houghten, R.A. 1993. Functional importance of amino acid residues making up peptide antigenic determinants. Mol. Immunol. 30: 577–585

  129. 129

    Wyatt, J.R., Vickers, T.A., Roberson, J.L., Buckheit, R.W. Jr., Klimkait, T., DeBaets, E., Davis, P.W., Rayner, B., Imbach, J.L. and Ecker, D.J. 1994. Combinatorially selected guanosine-quartet structure is a potent inhibitor of human immunodeficiency virus envelope-mediated cell fusion. Proc. Nad. Acad. Sci. USA 91: 1356–1360

  130. 130

    Owens, R.A., Gesellchen, P.D., Houchins, B.J. and DiMarchi, R.D. 1991. The rapid identification of HIV protease inhibitors through die synthesis and screening of defined peptide mixtures. Biochem. Biophys. Res. Common. 181: 402–408

  131. 131

    Dooley, C.T. and Houghten, R.A. 1993. The use of positional scanning synthetic peptide combinatorial libraries for the rapid determination of opioid receptor ligands. Life Sci. 52: 1509–1517

  132. 132

    Pinilla, C., Appel, J.R., Blane, P. and Houghten, R.A. 1992. Rapid identification of high affinity peptide ligands using positional scanning synthetic peptide combinatorial libraries. BioTechniques 13: 901–905

  133. 133

    Freier, S.M., Konings, D.A.M., Wyatt, J.R. and Ecker, D.J. 1995 Deconvolution of combinatorial libraries for drug discovery: A model system. Journal of Medicinal Chemistry 38: 344–352

  134. 134

    Dramanac, R., Drmanac, S., Strezoska, Z., Paunesku, T., Labat, I., Zeremski, M., Snoddy, J., Funkhouser, W.K., Koop, B., Hood, L. and Crkvenjakov, R. 1993. DNA sequence determination by hybridization: A strategy for efficient large-scale sequencing. Science 260: 1649–1652

  135. 135

    Southern, E.M., Case-Green, S.C., Elder, J.K., Johnson, M., Mir, K.U., Wang, L. and Williams, J.C. 1994. Arrays of complementary oligonucleotides for analysing the hybridisation behaviour of nucleic acids. Nucl. Acid Res. 22: 1368–1373

  136. 136

    Nestler, H.P., Bartlett, P.A. and Still, W.C. 1994. A general method for molecular tagging of encoded combinatorial chemistry libraries. J. Org. Chem. 59: 4723–4724

  137. 137

    Borchardt, A. and Still, W.C. 1994. Synthetic receptor binding elucidated with an encoded combinatorial library. J. Am. Chem. Soc. 116: 373–374

  138. 138

    Chu, Y.-H., Avila, L.Z., Biebuyck, H.A. and Whitesides, G.M. 1993. Using affinity capillary electrophoresis to identify the peptide in a peptide library that binds most tightly to vancomycin. J. Org. Chem. 58: 648–652

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to David J. Ecker.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ecker, D., Crooke, S. Combinatorial Drug Discovery: Which Methods Will Produce the Greatest Value?. Nat Biotechnol 13, 351–360 (1995). https://doi.org/10.1038/nbt0495-351

Download citation

Further reading