Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Simultaneous Amplification and Detection of Specific DNA Sequences


We have enhanced the polymerase chain reaction (PCR) such that specific DNA sequences can be detected without opening the reaction tube. This enhancement requires the addition of ethidium bromide (EtBr) to a PCR. Since the fluorescence of EtBr increases in the presence of double–stranded (ds) DNA an increase in fluorescence in such a PCR indicates a positive amplification, which can be easily monitored externally. In fact, amplification can be continuously monitored in order to follow its progress. The ability to simultaneously amplify specific DNA sequences and detect the product of the amplification both simplifies and improves PCR and may facilitate its automation and more widespread use in the clinic or in other situations requiring high sample through–put.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Mullis, K, Faloona, F., Scharf, S., Saiki, R., Horn, G. and Erlich, H. 1986. Specific enzymatic amplification of DNA in vitro: The polymerase chain reaction. CSHSQB 51: 263–273.

    CAS  Google Scholar 

  2. 2

    White, T.J., Arnheim, N. and Erlich, H.A. 1989. The polymerase chain reaction. Trends Genet. 5: 185–189.

    CAS  Article  Google Scholar 

  3. 3

    Erlich, H.A., Gelfand, D. and Sninsky, J.J. 1991. Recent advances in the polymerase chain reaction. Science 252: 1643–1651.

    CAS  Article  Google Scholar 

  4. 4

    Saiki, R.K., Gelfand, D.H., Stoffel, S., Scharf, S.J., Higuchi, R., Horn, G.T., Mullis, K.B. and Erlich, H.A. 1988. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239: 487–491.

    CAS  Article  Google Scholar 

  5. 5

    Saiki, R.K., Walsh, P.S., Levenson, C.H. and Erlich, H.A. 1989. Genetic analysis of amplified DNA with immobilized sequence-specific oligonucleotide probes. Proc. Natl. Acad. Sci. USA 86: 6230–6234.

    CAS  Article  Google Scholar 

  6. 6

    Kwok, S.Y., Mack, D.H., Mullis, K.B., Poiesz, B.J., Ehrlich, G.D., Blair, D. and Friedman-Kien, A.S. 1987. Identification of human immunodeficiency virus sequences by using in vitro enzymatic amplification and oligomer cleavage detection. J. Virol. 61: 1690–1694.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7

    Chehab, F.F., Doherty, M., Cai, S.P., Kan, Y.W., Cooper, S. and Rubin, E.M. 1987. Detection of sickle cell anemia and thalassemias. Nature 329: 293–294.

    CAS  Article  Google Scholar 

  8. 8

    Horn, G.T., Richards, B. and Klinger, K.W. 1989. Amplification of a highly polymorphic VNTR segment by the polymerase chain reaction. Nuc. Acids Res. 16: 2140.

    Article  Google Scholar 

  9. 9

    Katz, E.D. and Dong, M.W. 1990. Rapid analysis and purification of polymerase chain reaction products by high-performance liquid chromatography. Biotechniques 8: 546–555.

    CAS  PubMed  Google Scholar 

  10. 10

    Heiger, D.N., Cohen, A.S. and Karger, B.L. 1990. Separation of DNA restriction fragments by high performance capillary electrophoresis with low and zero crosslinked polyacrylamide using continuous and pulsed electric fields. J. Chromatogr. 516: 33–48.

    CAS  Article  Google Scholar 

  11. 11

    Kwok, S.Y. and Higuchi, R.G. 1989. Avoiding false positives with PCR. Nature 339: 237–238.

    CAS  Article  Google Scholar 

  12. 12

    Chehab, F.F. and Kan, Y.W. 1989. Detection of specific DNA sequences by fluorescence amplification: a color complementation assay. Proc. Natl. Acad. Sci. USA 86: 9178–9182.

    CAS  Article  Google Scholar 

  13. 13

    Holland, P.M., Abramson, R.D., Watson, R. and Gelfand, D.H. 1991. Detection of specific polymerase chain reaction product by utilizing the 5′ to 3′ exonulease activity of Thermus aquaticus DNA polymerase. Proc. Natl. Acad. Sci. USA 88: 7276–7280.

    CAS  Article  Google Scholar 

  14. 14

    Markovits, J., Roques, B.P. and Le Pecq, J.B. 1979. Ethidium dimmer: a new reagent for the fluorimetric determination of nucleic acids. Anal. Biochem. 94: 259–264.

    CAS  Article  Google Scholar 

  15. 15

    Kapuscinski, J. and Szer, W. 1979. Interactions of 4′, 6-diamidine-2-phenylindole with synthetic polynucleotides. Nuc. Acids Res. 6: 3519–3534.

    CAS  Article  Google Scholar 

  16. 16

    Searle, M.S. and Embrey, K.J. 1990. Sequence-specific interaction of Hoescht 33258 with the minor groove of an adenine-tract DNA duplex studied in solution by 1H NMR spectroscopy. Nuc. Acids Res. 18: 3753–3762.

    CAS  Article  Google Scholar 

  17. 17

    Li, H.H., Gyllensten, U.B., Cui, X.F., Saiki, R.K., Erlich, H.A. and Arnheim, N. 1988. Amplification and analysis of DNA sequences in single human sperm and diploid cells. Nature 335: 414–417.

    CAS  Article  Google Scholar 

  18. 18

    Abbott, M.A., Poiexz, B.J., Byrne, B.C., Kwok, S.Y., Sninsky, J.J. and Erlich, H.A. 1988. Enzymatic gene amplification: qualitative and quantitative methods for detecting proviral DNA amplified in vitro. J. Infect. Dis. 158: 1158.

    CAS  Article  Google Scholar 

  19. 19

    Saiki, R.K., Bugawan, T.L., Horn, G.T., Mullis, K.B. and Erlich, H.A. 1986. Analysis of enzymatically amplified β-globin and HLA-DQα DNA with allele-specific oligonucleotide probes. Nature 324: 163–166.

    CAS  Article  Google Scholar 

  20. 20

    Kogan, S.C., Doherty, M. and Gitschier, J. 1987. An improved method for prenatal diagnosis of genetic diseases by analysis of amplified DNA sequences. N. Engl. J. Med. 317: 985–990.

    CAS  Article  Google Scholar 

  21. 21

    Wu, D.Y., Ugozzoli, L., Pal, B.K. and Wallace, R.B. 1989. Allele-specific enzymatic amplification of β-globin genomic DNA for diagnosis of sickle cell anemia. Proc. Nail Acad. Sci. USA 86: 2757–2760.

    CAS  Article  Google Scholar 

  22. 22

    Kwok, S., Kellogg, D.E., McKinney, N., Spasic, D., Goda, L., Levenson, C. and Sninsky, J.J. 1990. Effects of primer-template mismatches on the polymerase chain reaction: Human immunodeficiency virus type 1 model studies. Nuc. Acids Res. 18: 999–1005.

    CAS  Article  Google Scholar 

  23. 23

    Chou, Q., Russell, M., Birch, D., Raymond, J. and Bloch, W. 1992. Prevention of pre-PCR mis-priming and primer dimerization improves low-copy-number amplifications. Submitted.

  24. 24

    Higuchi, R. 1989. Using PCR to engineer DNA, In: PCR Technology. H. A. Erlich (Ed.). Stockton Press, New York, N.Y. 61–70.

    Google Scholar 

  25. 25

    Haff, L., Atwood, J.G., DiCesare, J., Katz, E., Picozza, E., Williams, J.F. and Woudenberg, T. 1991. A high-performance system for automation of the polymerase chain reaction. Biotechniques 10: 102–103, 106–112.

    CAS  PubMed  Google Scholar 

  26. 26

    Tumosa, N. and Kahan, L. 1989. Fluorescent EIA screening of monoclonal antibodies to cell surface antigens. J. Immun. Meth. 116: 59–63.

    CAS  Article  Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Higuchi, R., Dollinger, G., Walsh, P. et al. Simultaneous Amplification and Detection of Specific DNA Sequences. Nat Biotechnol 10, 413–417 (1992).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing