Site-Directed Pegylation of Recombinant Interleukin-2 at its Glycosylation Site


We have modified recombinant interleukin-2 (rIL-2) to facilitate site-directed covalent attachment of monomethoxy polyethylene glycol (PEG). The site chosen for modification and subsequent covalent attachment with PEG (PEGylation) was the single glycosylation position found in the native interleukin-2 (IL-2). The mutant protein was expressed in E. coli, purified, and PEGylated with a PEG-maleimide reagent to obtain PEG-cys3-rIL-2. The PEG-cys3-rIL-2 had full bioactivity relative to the unmodified molecule and had an increase in hydrodynamic size sufficient to increase its systemic exposure by 4 fold. This method has general applicability for modifying any therapeutic protein at a specific site and thereby alter its potency. In particular, it can be used to attach PEG to prokaryotically expressed recombinant proteins at their glycosylation sites.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Robb, R.J. 1985. Human interleukin-2. Methods in Enzymol 116: 493–525.

  2. 2

    Smith, K.A., 1988. Interleukin-2: Inception, impact, and implications. Science 240: 1169–1176.

  3. 3

    Hadden, J.W. 1988. Recent advances in preclinical and clinical immunopharmacology of interleukin-2. Cancer Detect. Prev. 12: 537–552.

  4. 4

    Robb, R.J., Kutny, R.M., Panico, M. et al. 1984. Amino acid sequence and post-translational modification of human interleukin-2. Proc. Natl. Acad. Sci. USA 81: 6486–6490.

  5. 5

    Wang, A., Lu, S.-D., Mark, D.F. 1984. Site-specific mutagenesis of human interleukin-2 gene: Structure-function analysis of cysteine residues. Science 224: 1431–1433.

  6. 6

    Matsui, H., Fujita, T., Nishi-Takaoka, C. et al. 1985. Molecular cloning and expression of human interleukin-2 gene. Lymphokines 12: 1–12.

  7. 7

    Rosenberg, S.A., Grimm, E.A., McGrogan, M. et al. 1984. Biological activity of recombinant human interleukin-2 produced in Escherichia coli . Science 233: 1412–1415.

  8. 8

    Katre, N.V., Knauf, M.J. and Laird, W.J. 1987. Chemical modification of recombinant interleukin 2 by polyethylene glycol increases its potency in the murine Meth A sarcoma model. Proc. Natl. Acad. Sci. USA 84: 1487–1491.

  9. 9

    Knauf, M.J., Bell, D.P., Hirtzer, P., Luo, Z.-P., Young, J.D. and Katre, N.V. 1988. Relationship of effective molecular size to systemic clearance in rats of recombinant interleukin-2 chemically modified with water-soluble polymers. J. Biol. Chem. 263: 15064–15070.

  10. 10

    Zimmerman, R.J., Aukerman, S.L., Katre, N.V. et al. 1989. Schedule dependency of antitumor activity and toxicity of PEG-modified IL-2 in murine tumor models. Cancer Res. 49: 6521–6528.

  11. 11

    Davis, F.F., Abuchowski, A., Van Es, T. et al. 1980. Soluble, nonanti-genic polyethylene glycol-bound enzymes. Biomedical Polymers, p. 441. Academic Press, N.Y.

  12. 12

    Lisi, P.J., Van Es, T., Abuchowski, A. et al. 1982. Enzyme therapy. J. Applied Biochem. 4: 19–33.

  13. 13

    Beauchamp, C.O., Gonias, S.L., Menapace, D.P. et al. 1982. A new procedure for synthesis of polyethylene glycol-protein adducts. Anal. Biochem. 131: 25–33.

  14. 14

    Abuchowski, A., Kazo, G.M., Verhoest, C.R. et al. 1984. Cancer therapy with chemically modified enzymes. Cancer Biochem. Biophys. 7: 175–186.

  15. 15

    Means, G.E. and Feeney, R.E. 1971. Chemical Modification of Proteins, p. 219, Holden Day, Inc.

  16. 16

    Kramer, W., Drutsa, V., Jansen, H.-W. et al. 1984. Gapped duplex DNA approach to oligonucleotide-directed mutation construction. Nucleic Acids Res. 12: 9441–9456.

  17. 17

    Carter, P., Bedouelle, H. and Winter, G. 1985. Improved oligonucleotide site-directed mutagenesis using M 13 vectors. Nucleic Acids Res. 13: 4431–4443.

  18. 18

    Ausubel, F.M., Brent, R., Kingston, R.E. et al. 1987. Current Protocols in Molecular Biology, Vol. 1, Section 3.16.1 John Wiley, NY.

  19. 19

    Ausubel, F.M., Brent, R., Kingston, R.E. et al. 1987. Current Protocols in Molecular Biology, Vol. 1, Section 3.5.10 John Wiley, NY.

  20. 20

    Hanahan, D. 1983. Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol. 166: 557–580.

  21. 21

    Zoller, M.J. and Smith, M. 1983. Oligonucleotide-directed mutagenesis of DNA fragments cloned into M 13 Vectors. Methods in Enzymol. 100: 468–500.

  22. 22

    Greenfield, L., Dovey, H.F., Lawyer, F.C. et al. 1986. High Level expression of diphtheria toxin peptides in Escherichia coli . Bio/Technology 4: 1006–1011.

  23. 23

    Cole, G.E., McCabe, P.C., Inlow, D. et al. 1988. Stable expression of Aspergillus awamori glucoamylase in distiller's yeast. Bio/Technology 6: 417–421.

  24. 24

    Dorin, G., Hanisch, W.H., Lin, L.S. 1988. Process for recovering refractile bodies containing heterologous proteins from microbial hosts. United States Patent ♯4,748,234.

  25. 25

    Pillai, V.N.R. and Mutter, M., 1980. New, easily removable polyethylene glycol supports for liquid phase method of peptide synthesis. J. Org. Chem. 45: 5364–5367.

  26. 26

    Aldwin, L. and Nitecki, D. 1987. A water-soluble, monitorable peptide and protein crosslinking agent. Anal. Biochem. 164: 494–501.

  27. 27

    Tada, H., Shiho, O., Kuroshima, K. et al. 1986. An improved colorimetric assay for Interleukin-2. J. Immuno. Methods 93: 157–165.

  28. 28

    Katre, N.V. 1990. Immunogenicity of recombinant IL-2 modified by covalent attachment of polyethylene glycol. J. Immunology 144: 209–213.

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Goodson, R., Katre, N. Site-Directed Pegylation of Recombinant Interleukin-2 at its Glycosylation Site. Nat Biotechnol 8, 343–346 (1990).

Download citation

Further reading