Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Paper
  • Published:

Site-Directed Pegylation of Recombinant Interleukin-2 at its Glycosylation Site

Abstract

We have modified recombinant interleukin-2 (rIL-2) to facilitate site-directed covalent attachment of monomethoxy polyethylene glycol (PEG). The site chosen for modification and subsequent covalent attachment with PEG (PEGylation) was the single glycosylation position found in the native interleukin-2 (IL-2). The mutant protein was expressed in E. coli, purified, and PEGylated with a PEG-maleimide reagent to obtain PEG-cys3-rIL-2. The PEG-cys3-rIL-2 had full bioactivity relative to the unmodified molecule and had an increase in hydrodynamic size sufficient to increase its systemic exposure by 4 fold. This method has general applicability for modifying any therapeutic protein at a specific site and thereby alter its potency. In particular, it can be used to attach PEG to prokaryotically expressed recombinant proteins at their glycosylation sites.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Robb, R.J. 1985. Human interleukin-2. Methods in Enzymol 116: 493–525.

    Article  CAS  Google Scholar 

  2. Smith, K.A., 1988. Interleukin-2: Inception, impact, and implications. Science 240: 1169–1176.

    Article  CAS  Google Scholar 

  3. Hadden, J.W. 1988. Recent advances in preclinical and clinical immunopharmacology of interleukin-2. Cancer Detect. Prev. 12: 537–552.

    CAS  PubMed  Google Scholar 

  4. Robb, R.J., Kutny, R.M., Panico, M. et al. 1984. Amino acid sequence and post-translational modification of human interleukin-2. Proc. Natl. Acad. Sci. USA 81: 6486–6490.

    Article  CAS  Google Scholar 

  5. Wang, A., Lu, S.-D., Mark, D.F. 1984. Site-specific mutagenesis of human interleukin-2 gene: Structure-function analysis of cysteine residues. Science 224: 1431–1433.

    Article  CAS  Google Scholar 

  6. Matsui, H., Fujita, T., Nishi-Takaoka, C. et al. 1985. Molecular cloning and expression of human interleukin-2 gene. Lymphokines 12: 1–12.

    CAS  Google Scholar 

  7. Rosenberg, S.A., Grimm, E.A., McGrogan, M. et al. 1984. Biological activity of recombinant human interleukin-2 produced in Escherichia coli . Science 233: 1412–1415.

    Article  Google Scholar 

  8. Katre, N.V., Knauf, M.J. and Laird, W.J. 1987. Chemical modification of recombinant interleukin 2 by polyethylene glycol increases its potency in the murine Meth A sarcoma model. Proc. Natl. Acad. Sci. USA 84: 1487–1491.

    Article  CAS  Google Scholar 

  9. Knauf, M.J., Bell, D.P., Hirtzer, P., Luo, Z.-P., Young, J.D. and Katre, N.V. 1988. Relationship of effective molecular size to systemic clearance in rats of recombinant interleukin-2 chemically modified with water-soluble polymers. J. Biol. Chem. 263: 15064–15070.

    CAS  PubMed  Google Scholar 

  10. Zimmerman, R.J., Aukerman, S.L., Katre, N.V. et al. 1989. Schedule dependency of antitumor activity and toxicity of PEG-modified IL-2 in murine tumor models. Cancer Res. 49: 6521–6528.

    CAS  PubMed  Google Scholar 

  11. Davis, F.F., Abuchowski, A., Van Es, T. et al. 1980. Soluble, nonanti-genic polyethylene glycol-bound enzymes. Biomedical Polymers, p. 441. Academic Press, N.Y.

    Google Scholar 

  12. Lisi, P.J., Van Es, T., Abuchowski, A. et al. 1982. Enzyme therapy. J. Applied Biochem. 4: 19–33.

    CAS  Google Scholar 

  13. Beauchamp, C.O., Gonias, S.L., Menapace, D.P. et al. 1982. A new procedure for synthesis of polyethylene glycol-protein adducts. Anal. Biochem. 131: 25–33.

    Article  Google Scholar 

  14. Abuchowski, A., Kazo, G.M., Verhoest, C.R. et al. 1984. Cancer therapy with chemically modified enzymes. Cancer Biochem. Biophys. 7: 175–186.

    CAS  PubMed  Google Scholar 

  15. Means, G.E. and Feeney, R.E. 1971. Chemical Modification of Proteins, p. 219, Holden Day, Inc.

    Google Scholar 

  16. Kramer, W., Drutsa, V., Jansen, H.-W. et al. 1984. Gapped duplex DNA approach to oligonucleotide-directed mutation construction. Nucleic Acids Res. 12: 9441–9456.

    Article  CAS  Google Scholar 

  17. Carter, P., Bedouelle, H. and Winter, G. 1985. Improved oligonucleotide site-directed mutagenesis using M 13 vectors. Nucleic Acids Res. 13: 4431–4443.

    Article  CAS  Google Scholar 

  18. Ausubel, F.M., Brent, R., Kingston, R.E. et al. 1987. Current Protocols in Molecular Biology, Vol. 1, Section 3.16.1 John Wiley, NY.

    Google Scholar 

  19. Ausubel, F.M., Brent, R., Kingston, R.E. et al. 1987. Current Protocols in Molecular Biology, Vol. 1, Section 3.5.10 John Wiley, NY.

    Google Scholar 

  20. Hanahan, D. 1983. Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol. 166: 557–580.

    Article  CAS  Google Scholar 

  21. Zoller, M.J. and Smith, M. 1983. Oligonucleotide-directed mutagenesis of DNA fragments cloned into M 13 Vectors. Methods in Enzymol. 100: 468–500.

    Article  CAS  Google Scholar 

  22. Greenfield, L., Dovey, H.F., Lawyer, F.C. et al. 1986. High Level expression of diphtheria toxin peptides in Escherichia coli . Bio/Technology 4: 1006–1011.

    Article  CAS  Google Scholar 

  23. Cole, G.E., McCabe, P.C., Inlow, D. et al. 1988. Stable expression of Aspergillus awamori glucoamylase in distiller's yeast. Bio/Technology 6: 417–421.

    CAS  Google Scholar 

  24. Dorin, G., Hanisch, W.H., Lin, L.S. 1988. Process for recovering refractile bodies containing heterologous proteins from microbial hosts. United States Patent ♯4,748,234.

    Google Scholar 

  25. Pillai, V.N.R. and Mutter, M., 1980. New, easily removable polyethylene glycol supports for liquid phase method of peptide synthesis. J. Org. Chem. 45: 5364–5367.

    Article  CAS  Google Scholar 

  26. Aldwin, L. and Nitecki, D. 1987. A water-soluble, monitorable peptide and protein crosslinking agent. Anal. Biochem. 164: 494–501.

    Article  CAS  Google Scholar 

  27. Tada, H., Shiho, O., Kuroshima, K. et al. 1986. An improved colorimetric assay for Interleukin-2. J. Immuno. Methods 93: 157–165.

    Article  CAS  Google Scholar 

  28. Katre, N.V. 1990. Immunogenicity of recombinant IL-2 modified by covalent attachment of polyethylene glycol. J. Immunology 144: 209–213.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goodson, R., Katre, N. Site-Directed Pegylation of Recombinant Interleukin-2 at its Glycosylation Site. Nat Biotechnol 8, 343–346 (1990). https://doi.org/10.1038/nbt0490-343

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0490-343

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing