Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Paper
  • Published:

Alterations in the Domain Structure of Tissue-Type Plasminogen Activator Change the Nature of Asparagine-Linked Glycosylation

Abstract

The formation of N-linked oligosaccharides of eukaryotic glycoproteins starts with the attachment of a common precursor at the recognition site Asn-X-Ser/Thr. Subsequent processing, by yet unknown controlling factors, leads to the formation of three different glycans: the high mannose type, the complex type and the hybrid type. In order to gain insight into the processing mechanisms, we studied the glycan pattern of a panel of related molecules constructed by insertion, duplication or deletion of the domains encoded by the cDNA of a fibrinolytic glycoprotein, tissue-type plasminogen activator (t-PA). These variant molecules are identical in regard to the glycosylation sites originally situated in particular domains, but differ with respect to the sequential alignment of the domains. The variant and native t-PA genes were transfected into mouse C127 cells and their carbohydrate structures analyzed by the susceptibility to specific endoglycosidases and by reaction with sugar-specific lectins. We found that with one exception, all mutant activators lack the high mannose glycan found at asn 117 of native t-PA. The exception was a molecule that retains the original domain arrangement up to and through the glycosylation site at asn 117. These results demonstrate for the first time that structural alterations in the primary sequence distal to the actual glycosylation site can result in altered processing of N-linked oligosaccharides.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Goto, M., Akai, K., Murakami, A., Hashimoto, C., Tsuda, E., Ueda, M., Kawanishi, G., Takahashi, N., Ishimoto, A., Chiba, H. and Sasaki, R., 1988. Production of recombinant human erythropoietin in mammalian cells: host-cell dependency of the biological activity of the cloned glycoprotein. Biotechnology 6: 67–71.

    CAS  Google Scholar 

  2. Moonen, P., Mermod, J.J., Ernst, J.F., Hirshci, M. and DeLamarter, J.F. 1987. Increased biological activity of deglycosylated recombinant human granulocyte/macrophage colony-stimulating factor produced by yeast or animals cells. Proc. Natl. Acad. Sci. USA 84: 4428–4431.

    Article  CAS  Google Scholar 

  3. Donahue, R.E., Wang, E.A., Kaufman, R.J., Foutch, L., Leary, A.C., Withe-Giannetti, J.S., Metzger, M., Hewick, R.M., Steinbrink, D.R., Shaw, G. Kamen, R. Clark, S.C. 1986. Effects of N-linked carbohydrate on the in vivo properties of human GM-CSF. Cold Spring Harbor Symp. Quant. Biol. 51: 685–692.

    Article  CAS  Google Scholar 

  4. Yet, M.G., Shao, M.C. and Wold, F. 1988. Effects of the protein matrix on glycan processing in glycoproteins. FASEB J 2: 22–31.

    Article  CAS  Google Scholar 

  5. Pohl, G., Kenne, L., Nilsson, B. and Einarsson, M. 1987. Isolation and characterization of three different carbohydrate chains from melanoma tissue plasminogen activator. Eur. J. Biochem. 170: 69–75.

    Article  CAS  Google Scholar 

  6. Vehar, G.A., Spellman, M.W, Keyt, B.A., Ferguson, C.K., Keck, R.G., Chlouper, R.C., Harris, R., Bennett, W.F., Builder, S.E and Hancock, W.S. 1986. Characterization studies of human tissue-type plasminogen activator produced by recombinant DNA technology. Cold Spring Harbor Symp. Quan. Biol. 51: 551–562.

    Article  CAS  Google Scholar 

  7. Kalyan, N.K., Lee, S.G., Wilhelm, J., Fu, K.P., Hum, W.T., Rappaport, R., Hartzell, R.W., Urbano, C., Hung, P.P, 1988. Structure-function analysis with tissue-type plasminogen activator. J. Biol. Chem. 263: 3971–3978.

    CAS  PubMed  Google Scholar 

  8. Lee, S.G., Kalyan, N., Wilhelm, J., Hum, W.T., Rappaport, R., Cheng, S.M., Dheer, S., Urbano, C., Hartzell, R., Ronchetti-Blume, M., Levner, M. and Hung, P.P, 1988. Construction and expression of hybrid plasminogen activators prepared from tissue-type plasminogen activator and urokinase-type plasminogen activator genes. J. Biol. Chem. 263: 2917–2924.

    CAS  Google Scholar 

  9. Tarentino, A.L., Plummer, T.H. and Maley, F. 1974. The release of intact oligosaccharides from specific glycoproteins by endo-β-N-acetyl-glucosaminidase H. J. Biol. Chem. 249: 818–824.

    CAS  PubMed  Google Scholar 

  10. Tarentino, A.L., Gomez, C.M. and Plummer, T.H., Jr., 1985. Deglycosylation of asparagine linked glycans by peptide: N-glycosidase F. Biochem. 24: 4665–4671.

    Article  CAS  Google Scholar 

  11. Hubbard, S.C. 1988. The regulation of glycosylation. The influence of protein structure on N-linked oligosaccharide processing. J. Biol. Chem. 263: 19303–19317.

    CAS  PubMed  Google Scholar 

  12. Lustbader, J., Birken, S., Pollak, S., Levinson, L., Bernstine, E., Hsiung, N. and Canfield, R. 1987. Characterization of the expression products of recombinant human choriogonadotropin and subunits. J. Biol. Chem. 262: 14204–14212.

    CAS  PubMed  Google Scholar 

  13. Hotchkiss, A., Refino, C.J., Leonard, C.K., O'Connor, J.V., Crowley, C., McCabe, J., Tate, K., Nakamura, G., Powers, D., Levinson, A., Mohler, A. and Spellman, M.W. 1988. The influence of carbohydrate structure on the clearance of recombinant t-PA. Thromb. Haemostas. 60: 255–261.

    Article  CAS  Google Scholar 

  14. Zoller, M.J. and Smith, M. 1984. Oligonucleotide-directed mutagenesis: A simple method using two oligonucleotide primers and a single-stranded DNA template. DNA 3: 479–488.

    Article  CAS  Google Scholar 

  15. Kalyan, N.L., Hung, P.P., Levner, M.H., Dheer, S.K. and Lee, S.G. 1986. Site-specific DNA splicing: a general procedure for the creation of a restriction site at a predetermined position in a DNA sequence. Gene 42: 331–337.

    Article  CAS  Google Scholar 

  16. Kijimoto-Ochiai, S., Katagiri, Y.U. and Ochiai, H. 1985. Analysis of N-linked oligosaccharide chains of glycoproteins on nitrocellulose sheets using lectin-peroxidase reagents. Analytical Biochem. 147: 222–229.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilhelm, J., Lee, S., Kalyan, N. et al. Alterations in the Domain Structure of Tissue-Type Plasminogen Activator Change the Nature of Asparagine-Linked Glycosylation. Nat Biotechnol 8, 321–325 (1990). https://doi.org/10.1038/nbt0490-321

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0490-321

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing