Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Progress in the Regeneration and Genetic Manipulation of Cereal Crops

Abstract

The economically important cereal and grass crops have generally proved to be notoriously recalcitrant to manipulation in vitro. Regeneration of plants from single cells, a prerequisite for cellular and molecular manipulation, has proven to be especially difficult. Consequently, this group of plants has until recently remained outside the main stream of plant biotechnology. The discovery and exploitation of embryogenic tissue cultures, in which plant regeneration takes place by the formation of embryos from single somatic cells, has led to the development of efficient procedures for plant regeneration in almost all of the important species of grasses, and recovery of mature plants from protoplasts in crops such as maize, rice and sugarcane. These results, along with the success in somatic hybridization and the demonstration of transient as well as stable expression of introduced genes in grass cells and plants, provide challenging opportunities for the genetic manipulation and improvement of this group of food crops. It is argued, however, that a far better understanding of growth, development (including morphogenesis in vitro), physiology and molecular biology/genetics of plants—and continuous dialogue and interaction with plant breeders and geneticists—are required for the effective and useful application of the modern tools of biotechnology to major crop species.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Morrish, F., Vasil, V., and Vasil, I.K. 1987. Developmental morphogenesis and genetic manipulation in tissue and cell cultures of the Gramineae. Adv. Genet. 24:431–499.

    Article  CAS  Google Scholar 

  2. Vasil, I.K. 1987. Developing cell and tissue culture systems for the improvement of cereal and grass crops. J. Plant Physiol. 128:193–218.

    Article  Google Scholar 

  3. Ranch, J.P., Oglesby, L., and Zielinski, A.C. 1985. Plant regeneration from embryo-derived tissue cultures of soybean. In Vitro 21:653–658.

    Article  Google Scholar 

  4. Umbeck, P., Johnson, G., Barton, K., and Swain, W. 1987 Genetically transformed cotton (Gossypium hirsutum L.) plants. Bio/Technology 5:263–266.

    Article  CAS  Google Scholar 

  5. Everett, N.P., Robinson, K.E.P., and Mastarenhas, D. 1987. Genetic engineering of sunflower (Helianthus annuus L.). Bio/Technology 5:1201–1204.

    CAS  Google Scholar 

  6. Brackpool, A.L., Branton, R.L., and Blake, J. 1986. Regeneration in palms, p. 207–222. In: Cell Culture and Somatic Cell Genetics of Plants. Volume 3, Plant Regeneration and Genetic Variability (Vasil, I. K., ed.). Academic Press, Orlando.

    Google Scholar 

  7. Cronauer-Mitra, S.S., and Krikorian, A.D. 1988. Plant regeneration via somatic embryogenesis in the seeded diploid banana Musa ornata Roxb. Plant Cell Rep. (in press).

  8. Vardi, A., Spiegel-Roy, P., and Galun, E. 1982. Plant regeneration from Citrus protoplasts: variability in methodological requirements among cultivars and species. Theoret. Appl. Genet. 62:171–176.

    Article  CAS  Google Scholar 

  9. Rao, P.S., and Ozias-Akins, P. 1985. Plant regeneration through somatic embryogenesis in protoplast cultures of sandalwood (Santalum album L.). Protoplasma 124:80–86.

    Article  Google Scholar 

  10. Hakman, I., Fowke, L.C., van Arnold, S., and Eriksson, T. 1985. The development of somatic embryos in tissue cultures initiated from immature embryos of Picea abies (Norway spruce). Plant Sci. 38 53–59.

    Article  Google Scholar 

  11. Atree, S.M., Bekkaouni, F., Dunstan, D.I., and Fowke, L.C. 1987. Regeneration of somatic embryos from protoplasts isolated from an ernDryogenic suspension culture of white spruce (Picea glauca). Plant Cell Rep. (in press).

  12. Gupta, P.K., and Durzan, D.J. 1987. Somatic embryos from protoplasts of loblolly pine proembryonal cells. Bio/Technology 5:710–712.

    Google Scholar 

  13. Durzan, D.J., and Gupta, P.K. 1987. Somatic embryogenesis and polyembryogenesis in Douglas-fir cell suspension cultures. Pl. Sci. 52:229–235.

    Article  CAS  Google Scholar 

  14. Yamada, Y. 1977. Tissue culture studies in cereals, p. 144–159. In: Plant Cell, Tissue and Organ Culture (Reinert, J., and Bajaj, Y. P. S., eds.). Springer-Verlag, Heidelberg.

    Google Scholar 

  15. Vasil, I.K. 1982. Somatic embryogenesis and plant regeneration in cereals and grasses, p. 101–104. In: Plant Tissue Culture 1982 (Fujiwara, A., ed.). Maruzen, Tokyo.

    Google Scholar 

  16. Green, C.E. 1982. In vitro plant regeneration in cereals and grasses, p. 411–418. In: Frontiers of Plant Tissue Culture 1978 (Thorpe, T. A., ed.). University of Calgary, Calgary, Canada.

    Google Scholar 

  17. Thomas, E., King, P.J., and Potrykus, I. 1979. Improvement of crop plants via single cells in vitro—as assessment. Z. Pflanzenzuchtg. 82:1–30.

    Google Scholar 

  18. Vasil, V. and Vasil, I.K. 1981. Somatic embryogenesis and plant regeneration from tissue cultures of Pennisetum americanum and P. americanum × P. purpureum hybrid. Amer. J. Bot. 68:864–872.

    Article  Google Scholar 

  19. Bright, S.W.J. and Jones, M.G.K. (eds.). 1985. Cereal Tissue and Cell Culture, Martinus Nijhoff/Dr W. Junk Publishers, Dordrecht, The Netherlands.

    Book  Google Scholar 

  20. Vasil, I.K., and Vasil, V. 1986. Regeneration in cereal and other grass species, p. 121–150. In: Cell Culture and Somatic Cell Genetics of Plants, Volume 3, Plant Regeneration and Genetic Variability (Vasil, I.K., ed.). Academic Press, Orlando.

    Google Scholar 

  21. Vasil, V., and Vasil, I.K. 1981. Somatic embryogenesis and plant regeneration from suspension cultures of pearl millet (Pennisetum americanum). Ann. Bot. 47:669–678.

    Article  Google Scholar 

  22. Hesemann, C.U., and Schroder, G. 1982. Loss of nuclear DNA in leaves of rye. Theoret. Appl. Genet. 62:128–131.

    Article  Google Scholar 

  23. Beaulieu, G.C., Rogers, S.O., and Bendich, A.J. 1985. DNA extracted from wheat leaves is highly degraded: a possible basis for the difficulty in establishing leaf cell cultures in the Gramineae, p. 11. In: Abst. 1st. Intern. Congr. PI. Molec. Biol., Savannah, GA.

  24. Taylor, M.G., and Vasil, I.K. 1987. Analysis of DNA size, content and cell cycle in leaves of Napier grass (Pennisetum purpureum Schum.). Theoret. Appl. Genet. 74:681–686.

    Article  CAS  Google Scholar 

  25. Rajasekaran, K., Hein, M.B., Davis, G.C., Carnes, M.G. and Vasil, I.K. 1987. Endogenous plant growth regulators in leaves and tissue cultures of napier grass (Pennisetum purpureum Schum.). J. Pl. Physiol. 130:13–25.

    Article  CAS  Google Scholar 

  26. Rajasekaran, K., Hein, M.B., and Vasil, I.K. 1987. Endogenous abscisic acid and indole-3-acetic acid and somatic embryogenesis in cultured leaf explants of Pennisetum purpureum Schum.: effects in vivo and in vitro of glyphosate, fluridone and paclobutrazol. Pl. Physiol. 84:47–51.

    Article  CAS  Google Scholar 

  27. Tomes, D.T., and Smith, O.S. 1985. The effect of parental genotype on initiation of embryogenic callus from elite maize (Zea mays L.) germplasm. Theoret. Appl. Genet. 70:505–509.

    Article  CAS  Google Scholar 

  28. Haydu, Z., and Vasil, I.K. 1981. Somatic embryogenesis and plant regeneration from leaf tissues and anthers of Pennisetum purpureum. Theoret. Appl. Genet. 59:269–273.

    Article  CAS  Google Scholar 

  29. Lu, C., Vasil, V., and Vasil, I.K. 1983. Improved efficiency of somatic embryogenesis and plant regeneration in tissue cultures of maize (Zea mays L.). Theoret. Appl. Genet. 62:285–290.

    Article  Google Scholar 

  30. Duncan, D.R., Williams, M.E., Zehr, B.E., and Widholm, J.M. 1985. The production of callus capable of plant regeneration from immature embryos of numerous Zea mays genotypes. Planta 165:322–332.

    Article  CAS  Google Scholar 

  31. Higgins, P., and Mathias, R.J. 1987. The effect of the 4B chromosomes of hexaploid wheat on the growth and regeneration of callus cultures. Theoret. Appl. Genet. 74:439–444.

    Article  CAS  Google Scholar 

  32. Bayliss, M.W. 1980. Chromosomal variation in plant tissues in culture. Int. Rev. Cytol. Suppl 11A:113–144.

  33. D'Amato, F. 1985. Cytogenetics of plant cell and tissue cultures and their regenerates. CRC Crit. Rev. Pl. Sci. 3:73–112.

    Article  Google Scholar 

  34. Swedlund, B., and Vasil, I.K. 1985. Cytogenetic characterization of embryogenic callus and regenerated plants of Pennisetum americanum (L.) K. Schum. Theoret. Appl. Genet. 69:575–581.

    Article  CAS  Google Scholar 

  35. Larkin, P.J., and Scowcroft, W.R. 1981. Somaclonal variation—a novel source of variability from cell cultures for plant improvement. Theoret. Appl. Genet. 60:197–214.

    Article  CAS  Google Scholar 

  36. Maretzki, A. 1987. Tissue culture: its prospects and problems, p. 343–384. In: Sugarcane Improvement Through Breeding (Heinz, D. J., ed.). Elsevier, Amsterdam.

    Chapter  Google Scholar 

  37. Cavallini, A., Lupi, M.C., Cremonini, R., and Bennici, A. 1987. In vitro culture of Bellevalia romana (L.) Rchb. III. Cytological study of somatic embryos. Protoplasma 139:66–70.

    Article  Google Scholar 

  38. Kobayashi, S. 1987. Uniformity of plants regenerated from orange (Citrus sinensis Osb.) protoplasts. Theoret. Appl. Genet. 74:10–14.

    Article  CAS  Google Scholar 

  39. Hibberd, K.A., Anderson, P.A., and Barker, M. 1986. Tryptophan overproducer mutants of cereal crops. United States Patent No. 4,581,847.

  40. Boyes, C.J., and Vasil, I.K. 1987. In vitro selection for tolerance to S-(2-aminoethyl)-L-cysteine and overproduction of lysine in embryogenic calli and regenerated plants of Pennisetum americanum (L.) K. Schum. Pl. Sci. 50:195–203.

    Article  CAS  Google Scholar 

  41. Fraley, R.T., Rogers, S.G., and Horsch, R.B. 1986. Genetic transformation in higher plants. CRC Crit. Rev. PI. Sci. 4:1–46.

    Article  CAS  Google Scholar 

  42. Srinivasan, C., and Vasil, I.K. 1986. Plant regeneration from protoplasts of sugarcane. J. Pl. Physiol. 126:41–48.

    Article  CAS  Google Scholar 

  43. Chen, D., and Xia, Z. 1987. Mature plant regeneration from cultured protoplasts of Polypogon fugax Nees ex Steud. Sci. Sinica 30B:698–703.

    Google Scholar 

  44. Kyozuka, J., Hayashi, Y., and Shimamoto, K. 1987. High frequency plant regeneration from rice protoplasts by novel nurse culture methods. Molec. Gen. Genet. 206:408–413.

    Article  CAS  Google Scholar 

  45. Rhodes, C.A., Lowe, K.S., and Ruby, K.L. 1988. Plant regeneration from protoplasts isolated from embryonic maize cell cultures. Bio/Technology 6:56–60.

    Google Scholar 

  46. Tabaeizadeh, Z., Ferl, R.J., and Vasil, I.K. 1986. Somatic hybridization in the Gramineae: Saccharum officinarum L. (sugarcane) + Pennisetum americanum (L.) K. Schum. (pearl millet). Proc. Natl. Acad. Sci. U.S.A. 83:5616–5619.

    Article  CAS  Google Scholar 

  47. Terada, R., Kyozuka, J., Nishibayashi, S., and Shimamoto, K. 1987. Plantlet regeneration from somatic hybrids of rice (Oryza sativa L.) and barnyard grass (Ehinochloa oryzicola Vasing). Molec. Gen. Genet. 210:39–43.

    Article  Google Scholar 

  48. Ozias-Akins, P., Tabaeizadeh, Z., Pring, D.R., and Vasil, I.K. 1988. Preferential amplification of mitochondrial DNA fragments in somatic hybrids of the Gramineae. Curr. Genet. (in press).

  49. Potrykus, I., Petruska, J., Paszkowski, J., Saul, M., and Shillito, R.D. 1985. Direct gene transfer to cells of a graminaceous monocot. Molec. Gen. Genet. 199:183–188.

    Article  CAS  Google Scholar 

  50. Lorz, H., Baker, B., and Schell, J. 1985. Gene transfer to cereal cells mediated by protoplast transformation. Molec. Gen. Genet. 199:178–182.

    Article  Google Scholar 

  51. Fromm, M., Taylor, L.P., and Walbot, V. 1986. Stable transformation of maize after gene transfer by electroporation. Nature 319:791–793.

    Article  CAS  Google Scholar 

  52. Uchimiya, H., Fushimi, T., Hashimoto, H., Harada, H., Syono, K., and Sugawara, Y. 1986. Expression of a foreign gene in callus derived from DNA-treated protoplasts of rice (Oryza sativa L.). Molec. Gen. Genet. 204:204–207.

    Article  CAS  Google Scholar 

  53. Hauptmann, R.M., Ozias-Akins, P., Vasil, V., Tabaeizadeh, Z., Rogers, S.G., Horsch, R.B., Vasil, I.K., and Fraley, R.T. 1987. Transient expression of electroporated DNA in monocotyledonous and dicotyledonous species. Pl. Cell Rep. 6:265–270.

    Article  CAS  Google Scholar 

  54. Hauptmann, R.M., Vasil, V., Ozias-Akins, P., Tabaeizadeh, Z., Rogers, S.G., Fraley, R.T., Horsch, R.B., and Vasil, I.K. 1988. Evaluation of selectable markers for obtaining stable transformants in the Gramineae PI. Physiol. (in Press).

    Google Scholar 

  55. Rhodes, C.A., Pierce, D.A., Mettler, I.J., Mascarenhas, D. and Detmer, J. 1988. Genetically transformed maize plants from electroporated protoplasts. Nature (submitted).

  56. de la Pena, A., Lorz, H., and Schell, J. 1987. Transgenic rye plants obtained by injecting DNA into young floral tillers. Nature 325:274–276.

    Article  CAS  Google Scholar 

  57. Schell, J.S. 1987. Transgenic plants as tools to study the molecular organization of plant genes. Science 237:1176–1183.

    Article  Google Scholar 

  58. Schafer, W., Gorz, A., and Kahl, G. 1987. T-DNA integration and expression in a monocot crop plant after induction of Agrobacterium. Nature 327:529–532.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasil, I. Progress in the Regeneration and Genetic Manipulation of Cereal Crops. Nat Biotechnol 6, 397–402 (1988). https://doi.org/10.1038/nbt0488-397

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0488-397

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing