Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Multiplexed protein profiling on microarrays by rolling-circle amplification

Abstract

Fluorescent-sandwich immunoassays on microarrays hold appeal for proteomics studies, because equipment and antibodies are readily available, and assays are simple, scalable, and reproducible. The achievement of adequate sensitivity and specificity, however, requires a general method of immunoassay amplification. We describe coupling of isothermal rolling-circle amplification (RCA) to universal antibodies for this purpose. A total of 75 cytokines were measured simultaneously on glass arrays with signal amplification by RCA with high specificity, femtomolar sensitivity, 3 log quantitative range, and economy of sample consumption. A 51-feature RCA cytokine glass array was used to measure secretion from human dendritic cells (DCs) induced by lipopolysaccharide (LPS) or tumor necrosis factor-α (TNF-α). As expected, LPS induced rapid secretion of inflammatory cytokines such as macrophage inflammatory protein (MIP)-1β, interleukin (IL)-8, and interferon-inducible protein (IP)-10. We found that eotaxin-2 and I-309 were induced by LPS; in addition, macrophage-derived chemokine (MDC), thymus and activation-regulated chemokine (TARC), soluble interleukin 6 receptor (sIL-6R), and soluble tumor necrosis factor receptor I (sTNF-RI) were induced by TNF-α treatment. Because microarrays can accommodate 1,000 sandwich immunoassays of this type, a relatively small number of RCA microarrays seem to offer a tractable approach for proteomic surveys.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of immunoassays with RCA signal amplification.
Figure 2: Sensitivity of cytokine detection by RCA and direct detection.
Figure 3: Kinetics of cytokine production in maturing LCs on microarrays.
Figure 4
Figure 5: Comparison of MDC measurement in supernatants by commercial ELISA and multiplexed RCA-amplified microarray immunoassay.

Similar content being viewed by others

References

  1. Bussow, K. et al. A method for global protein expression and antibody screening on high-density filters of an arrayed cDNA library. Nucleic Acids Res. 26, 5007–5008 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Leuking, A. et al. Protein microarrays for gene expression and antibody screening. Anal. Biochem. 270, 103–111 (1999).

    Article  Google Scholar 

  3. Ge, H. UPA, a universal protein array system for quantitative detection of protein–protein, protein–DNA, protein–RNA and protein–ligand interactions. Nucleic Acids Res. 28, e3 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. de Wildt, R.M.T., Mundy, C.R., Gorick, B.D. & Tomlinson, I.M. Antibody arrays for high-throughput screening of antibody–antigen interactions. Nat. Biotechnol. 18, 989–994 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. MacBeath, G. & Schreiber, S.L. Printing proteins as microarrays for high-throughput function determination. Science 289, 1760–1763 (2000).

    CAS  PubMed  Google Scholar 

  6. Zhu, H. et al. Global analysis of protein activities using proteome chips. Science 293, 2101–2105 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Mendoza, L.G. et al. High-throughput microarray-based enzyme-linked immunoabsorbant assay (ELISA). Biotechniques 27, 778–788 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Holt, L.J., Enever, C., de Wildt, R.M. & Tomlinson, I.M. The use of recombinant antibodies in proteomics. Curr. Opin. Biotechnol. 11, 445–449 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Hanes, J., Schaffitzel, C., Knappik, A. & Pluckthun, A. Picomolar affinity antibodies from a fully synthetic naive library selected and evolved by ribosome display. Nat. Biotechnol. 18, 1287–1292 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Lohse, P.A. & Wright, M.C. In vitro protein display in drug discovery. Curr. Opin. Drug Discov. Devel. 4, 198–204 (2001).

    CAS  PubMed  Google Scholar 

  11. Nord, K., Gunneriusson, E., Uhlén, M. & Nygren, P.-Å. Ligands selected from combinatorial libraries of protein A for use in affinity capture of apolipoprotein A-1M and Taq DNA polymerase. J. Biotechnol. 80, 45–54 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Wiese, R., Belosludtsev, Y., Powdrill, T., Thompson, P. & Hogan, M. Simultaneous multianalyte ELISA performed on a microarray platform. Clin. Chem. 47, 1451–1457 (2001).

    CAS  PubMed  Google Scholar 

  13. Moody, M.D., Van Arsdell, S.W., Murphy, K.P., Orencole, S.F. & Burns, C. Array-based ELISAs for high-throughput analysis of human cytokines. Biotechniques 31, 186–194 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Haab, B.B., Dunham, M.J. & Brown, P.O. Protein microarrays for highly parallel detection and quantitation of specific proteins and antibodies in complex solutions. Genome Biol. 2, 1–13 (2001).

    Article  Google Scholar 

  15. Lizardi, P. et al. Mutation detection and single molecule counting using isothermal rolling circle amplification. Nat. Genet. 19, 225–232 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Schweitzer, B. et al. Immunoassays with rolling circle DNA amplification: a versatile platform for ultrasensitive antigen detection. Proc. Natl. Acad. Sci. USA 97, 10113–10119 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nallur, G. et al. Signal amplification by rolling circle amplification on DNA microarrays. Nucleic Acids Res. 29, e118 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wiltshire, S. et al. Detection of multiple allergen-specific IgE on microarrays by immunoassay with rolling circle amplification. Clin. Chem. 46, 1990–1993 (2000).

    CAS  PubMed  Google Scholar 

  19. Mullenix, M.C., Wiltshire, S., Shao, W., Kitos, G. & Schweitzer, B. Allergen-specific IgE detection on microarrays using rolling circle amplification: correlation with in vitro assays for serum IgE. Clin. Chem. 47, 1926–1929 (2001).

    Google Scholar 

  20. Gatti, E. et al. Large-scale culture and selective maturation of human Langerhans cells from granulocyte colony-stimulating factor-mobilized CD34+ progenitors. J. Immunol. 164, 3600–3607 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Foster, J.R. The functions of cytokines and their uses in toxicology. Int. J. Exp. Pathol. 82, 171–192 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pulendran, B., Palucka, K. & Banchereau, J. Sensing pathogens and tuning immune responses. Science 293, 253–256 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Zlotnik, A. & Yoshie, O. Chemokines: a new classification system and their role in immunity. Immunity 12, 121–127 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Moser, B. & Loetscher, P. Lymphocyte traffic control by chemokines. Nat. Immunol. 2, 123–127 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Dean, F.B., Nelson, J.R., Giesler, T.L. & Lasken, R.S. Rapid amplification of plasmid and phage DNA using phi29 DNA polymerase and multiply primed rolling circle amplification. Genome Res. 11, 1095–1099 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Naaby-Hansen, S., Waterfield, M.D. & Cramer, R. Proteomics—post-genomic cartography to understand gene function. Trends Pharmacol. Sci. 22, 376–384 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Figeys, D. Array and lab on a chip technology for protein characterization. Curr. Opin. Mol. Ther. 1, 685–694 (1999).

    CAS  PubMed  Google Scholar 

  28. Emili, A.Q. & Cagney, G. Large-scale functional analysis using peptide or protein arrays. Nat. Biotechnol. 18, 393–397 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Liu, Y-J. Dendritic cell subsets and lineages, and their functions in innate and adaptive immunity. Cell 106, 259–262 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Mellman, I. & Steinman, R.M. Dendritic cells: specialized and regulated antigen processing machines. Cell 106, 255–258 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Sallusto, F. et al. Distinct patterns and kinetics of chemokine production regulate dendritic cell function. Eur. J. Immunol. 29, 1617–1625 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Moser, M. & Murphy, K.M. Dendritic cell regulation of TH1-TH2 development. Nat. Immunol. 1, 199–205 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Gygi, S.P., Rochon, Y., Franza, B.R. &. Aebersold, R. Correlation between protein and mRNA abundance in yeast. Mol. Cell. Biol. 19, 1720–1730 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sebastiani, S. et al. Chemokine receptor expression and function in CD4+ T lymphocytes with regulatory activity. J. Immunol. 166, 996–1002 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Loetscher, P. et al. The ligands of CXC chemokine receptor 3, I-TAC, Mig, and IP10, are natural antagonists for CCR3. J. Biol. Chem. 276, 2986–2991 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Gesser, B. et al. IL-8 induces T cell chemotaxis, suppresses IL-4, and up-regulates IL-8 production by CD4+ T cells. J. Leukoc. Biol. 59, 407–411 (1996).

    Article  CAS  PubMed  Google Scholar 

  37. Matsushima, K., Larsen, C.G., DuBois, G.C. & Oppenheim, J.J. Purification and characterization of a novel monocyte chemotactic and activating factor produced by a human myelomonocytic cell line. J. Exp. Med. 169, 1485–1490 (1989).

    Article  CAS  PubMed  Google Scholar 

  38. Karpus, W.J. & Kennedy, K.J. MIP-1α and MCP-1 differentially regulate acute and relapsing autoimmune encephalomyelitis as well as Th1/Th2 lymphocyte differentiation. J. Leukoc. Biol. 62, 681–687 (1997).

    Article  CAS  PubMed  Google Scholar 

  39. Gu, L. et al. Control of TH2 polarization by the chemokine monocyte chemoattractant protein-1. Nature 404, 407–411 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Imai, T. et al. Selective recruitment of CCR4-bearing Th2 cells toward antigen-presenting cells by the CC chemokines thymus and activation-regulated chemokine and macrophage-derived chemokine. Int. Immunol. 11, 81–88 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Lillard, J.W. Jr., Boyaka, P.N., Taub, D.D. & McGhee, J.R. RANTES potentiates antigen-specific mucosal immune responses. J. Immunol. 166, 162–169 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Kawai, T. et al. Selective diapedesis of Th1 cells induced by endothelial cell RANTES. J. Immunol. 163, 3269–3278 (1999).

    CAS  PubMed  Google Scholar 

  43. Harford, J.B. & Morris, D.R. Post-transcriptional gene regulation. (Wiley-Liss>, Inc., New York; 1997).

    Google Scholar 

  44. Sallusto, F. & Lanzavecchia, A. Understanding dendritic cell and T-lymphocyte traffic through the analysis of chemokine receptor expression. Immunol. Rev. 177, 134–140 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Langenkamp, A., Messi, M., Lanzavecchia, A. & Sallusto, F. Kinetics of dendritic cell activation: impact on priming of TH1, TH2 and nonpolarized T cells. Nat. Immunol. 1, 311–316 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Sallusto, F., Mackay, C.R., & Lanzavecchia, A. Selective expression of the eotaxin receptor CCR3 by human T helper 2 cells. Science 277, 2005–2008 (1997).

    Article  CAS  PubMed  Google Scholar 

  47. Andrew, D.P. et al. STCP-1 (MDC) CC chemokine acts specifically on chronically activated Th2 lymphocytes and is produced by monocytes on stimulation with Th2 cytokines IL-4 and IL-13. J. Immunol. 161, 5027–5038 (1998).

    CAS  PubMed  Google Scholar 

  48. Imai, T. et al. Macrophage-derived chemokine is a functional ligand for the CC chemokine receptor 4. J. Biol. Chem. 273, 1764–1768 (1998).

    Article  CAS  PubMed  Google Scholar 

  49. Baba, M. et al. Identification of CCR6, the specific receptor for a novel lymphocyte-directed CC chemokine LARC. J. Biol. Chem. 272, 14893–14898 (1997).

    Article  CAS  PubMed  Google Scholar 

  50. Chomarat, P. et al. IL-6 switches the differentiation of monocytes from dendritic cells to macrophages. Nat. Immunol. 1, 510–514 (2000).

    Article  CAS  PubMed  Google Scholar 

  51. Thijs, L.G. & Hack, C.E. Time course of cytokine levels in sepsis. Intensive Care Med. Suppl 2, S258–S263 (1995).

  52. Cavani, A. et al. Patients with allergic contact dermatitis to nickel and nonallergic individuals display different nickel-specific T cell responses: evidence for the presence of effector CD8+ and regulatory CD4+ T cells. J. Invest. Dermatol. 111, 621–628 (2000).

    Article  Google Scholar 

Download references

Acknowledgements

We thank K. Kukanskis and S. Cooley (MSI) for manufacturing the protein microarrays used in this study. We also thank Ron Lennox for suggesting the collaboration between Molecular Staging, Inc. and Cellular Genomics, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen F. Kingsmore.

Ethics declarations

Competing interests

S.F.K. is employed by Molecular Staging, Inc.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schweitzer, B., Roberts, S., Grimwade, B. et al. Multiplexed protein profiling on microarrays by rolling-circle amplification. Nat Biotechnol 20, 359–365 (2002). https://doi.org/10.1038/nbt0402-359

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0402-359

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing