Article | Published:

Antifungal activity of a virally encoded gene in transgenic wheat

Nature Biotechnology volume 18, pages 446449 (2000) | Download Citation

Subjects

Abstract

The cDNA encoding the antifungal protein KP4 from Ustilago maydis-infecting virus was inserted behind the ubiquitin promoter of maize and genetically transferred to wheat varieties particularly susceptible to stinking smut (Tilletia tritici) disease. The transgene was integrated and inherited over several generations. Of seven transgenic lines, three showed antifungal activity against U. maydis. The antifungal activity correlated with the presence of the KP4 transgene. KP4-transgenic, soil-grown wheat plants exhibit increased endogenous resistance against stinking smut.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    , , & Crop production and crop protection. (Elsevier, Amsterdam, The Netherlands; 1994).

  2. 2.

    In Viruses of fungi and simple eukaryotes, Mycology Series, Vol. 7. (eds Koltin, Y. & Leibowitz, M.J.) 209–242 (Marcel Dekker, New York, NY; 1988).

  3. 3.

    & Fungal viruses. Bacteriol. Rev. 38, 29–56 (1974).

  4. 4.

    , & Preliminary characterization of two species of dsRNA in yeast and their relationship to the killer character. Nature 245, 81–86 (1973).

  5. 5.

    , & The killer system in Ustilago maydis: heterokaryon transfer and loss of determinants. Phytopathology 63, 1017–1018 (1973).

  6. 6.

    & . Nature of a factor causing interstrain lethality in Ustilago maydis. Phytopathology 61, 50–53 (1971).

  7. 7.

    & Specificity of Ustilago maydis killer proteins. Appl. Microbiol. 30, 694–696 (1975).

  8. 8.

    & Killer phenomenon in Ustilago maydis: comparison of the killer proteins. Exp. Mycol. 2, 270–278 (1978).

  9. 9.

    & Bunt and smut disease of wheat: concepts and methods of disease management. Mexico, D.F.:Centro Internacional de Mejormamento de Maiz Y Trigo (1996).

  10. 10.

    , & Brandpilze und Streifenkrankheiten: Sortenanfälligkeit. Agrarforschung 2, 325–328 (1995).

  11. 11.

    , & Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol. Biol. 18, 675–689 (1992).

  12. 12.

    , , , & Non-systemic expression of a stress-responsive maize polyubiquitin gene (Ubi-1) in transgenic rice plants. Plant Mol. Biol. 26, 1007–1012 (1994).

  13. 13.

    , & High-level secretion of a virally encoded anti-fungal toxin in transgenic tobacco. Plant Mol. Biol. 30, 359–366 (1996).

  14. 14.

    , & Compendium of tobacco disease. (American Phytopathological Society Press, St. Paul, MN 1991).

  15. 15.

    , , , & Processing and secretion of a virally encoded antifungal toxin in transgenic tobacco plants: evidence for a Kex2p pathway in plants. Plant Cell 7, 677–688 (1995).

  16. 16.

    , , & Development of the particle inflow gun for DNA delivery to plant cells. Plant Cell Rep. 11, 323–328 (1992).

  17. 17.

    & Expression of a novel high-molecular weight glutenin subunit gene in transgenic wheat. Nat. Biotechnol. 14, 875–879 (1996).

  18. 18.

    et al. Transformation of wheat with high molecular weight subunit genes results in improved functional properties. Nat. Biotechnol. 15, 1295–1299 (1997).

  19. 19.

    , & The development of a nuclear male sterility system in wheat. Expression of the barnase gene under control of tapetum specific promoters. Theor. Appl. Genet. 95, 125–131 (1997).

  20. 20.

    , , & Integration and expression of the high molecular weight glutenin subunit 1AX1 gene into wheat. Nat. Biotechnol. 14, 1155–1159 (1996).

  21. 21.

    & The impact of selection parameters on the phenotype and genotype of transgenic rice callus and plants. Transgenic Res. 4, 44–51 (1995).

  22. 22.

    , , and Genetic engineering of wheat for increased resistance to powdery mildew disease. Theor. Appl. Genet. 98, 1079–1086 (1999).

  23. 23.

    et al. Development of wheat scab symptoms is delayed in transgenic wheat plants that constitutively express a rice thaumatin-like protein gene. Theor. Appl. Genet. 99, 755–760 (1999).

  24. 24.

    , , & Selection of transformed protoplast-derived Zea mays colonies with phosphinothricin and a novel assay using the pH indicator chlorophenol red. Planta 190, 454–458 (1993).

  25. 25.

    et al. Engineering herbicide resistance in plants by expression of a de-toxifying enzyme. EMBO J. 6, 2513–2518 (1987).

  26. 26.

    , & Rapid production of multiple independent lines of fertile transgenic wheat (Triticum aestivum). Plant Physiol. 102, 1077–1084 (1993).

  27. 27.

    , , , & Assessment of the degree and type of polymorphism in barley (Hordeum vulgare). Theor. Appl. Genet. 80, 826–832 (1990).

  28. 28.

    et al. In Gene transfer to plants. (eds Potrykus, I. & Spangenberg, G.) 215–290 (Springer-Verlag, New York, NY; 1995).

  29. 29.

    in Molecular plant pathology , Vol. II. (eds Gurr, S.J., McPherson, M.J. & Bowles, D.J.) 15–21 (Oxford University Press, New York, NY; 1992).

  30. 30.

    et al. Ustilago maydis KP6 killer toxin: structure, expression in Saccharomyces cerevisiae, and relationship to other cellular toxins. Mol. Cell. Biol. 10, 1373–1381 (1990).

  31. 31.

    PLABSTAT–Ein Computerprogramm zur statistischen Analyse von pflanzenzüchterischen Experimenten. Version 2M. (Institut für Pflanzenzüchtung, Saatgutforschung und Populationsgenetik, Universität Hohenheim; 1995).

Download references

Acknowledgements

We are grateful to Dr. R. Bilang (Federal Institute of Technology Zurich, Switzerland) for the pAct:bar, and Dr. G. Spangenberg (University La Trobe at Bundoora Victoria, Australia) for the pUbi:uidA constructs. The KP4 was kindly provided by Dr. J. Bruenn (State University of New York at Buffalo, USA). Furthermore, we thank S. Klarer, K. Konja, E. Fenner, and E. Calame-Doz for greenhouse and technical assistance, and Dr. P. King (Friedrich Miescher Institute, Basel, Switzerland) for correcting the manuscript.

Author information

Affiliations

  1. Swiss Federal Institute of Technology Zurich, Universitätstrasse 2, 8092, Zurich, Switzerland

    • Monika Clausen
    • , Regina Kräuter
    • , Ingo Potrykus
    •  & Christof Sautter
  2. Federal Research Station for Agrarecology and Agriculture, Reckenholz 191-201, 8046 Zürich, Switzerland

    • Gabriele Schachermayr

Authors

  1. Search for Monika Clausen in:

  2. Search for Regina Kräuter in:

  3. Search for Gabriele Schachermayr in:

  4. Search for Ingo Potrykus in:

  5. Search for Christof Sautter in:

Corresponding author

Correspondence to Christof Sautter.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/74521

Further reading