Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Antifungal activity of a virally encoded gene in transgenic wheat

Abstract

The cDNA encoding the antifungal protein KP4 from Ustilago maydis-infecting virus was inserted behind the ubiquitin promoter of maize and genetically transferred to wheat varieties particularly susceptible to stinking smut (Tilletia tritici) disease. The transgene was integrated and inherited over several generations. Of seven transgenic lines, three showed antifungal activity against U. maydis. The antifungal activity correlated with the presence of the KP4 transgene. KP4-transgenic, soil-grown wheat plants exhibit increased endogenous resistance against stinking smut.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The constructs (A) pUbi:KP4 and (B) pAct:bar.
Figure 2: Southern blot analysis of the KP4 transgene in T0 Greina.
Figure 3: Antifungal activity assay of secreted proteins from Greina seeds.
Figure 4: Genomic Southern blot analysis of selected T2 progeny.

Similar content being viewed by others

References

  1. Oerke, E-C., Dehne, H-W., Schönbeck, F. & Weber, A. Crop production and crop protection. (Elsevier, Amsterdam, The Netherlands; 1994).

    Google Scholar 

  2. Koltin, Y. In Viruses of fungi and simple eukaryotes, Mycology Series, Vol. 7. (eds Koltin, Y. & Leibowitz, M.J.) 209–242 (Marcel Dekker, New York, NY; 1988).

    Google Scholar 

  3. Lehmke, P.A. & Nash, C.H. Fungal viruses. Bacteriol. Rev. 38, 29–56 (1974).

    Google Scholar 

  4. Bevan, E.A., Herring, A.J. & Mitchell, D.J. Preliminary characterization of two species of dsRNA in yeast and their relationship to the killer character. Nature 245, 81–86 (1973).

    Article  CAS  Google Scholar 

  5. Day, P.R., & Anagnostakis, S.L. The killer system in Ustilago maydis: heterokaryon transfer and loss of determinants. Phytopathology 63, 1017–1018 (1973).

    Article  Google Scholar 

  6. Hankin, L. & Puhalla, J.E. . Nature of a factor causing interstrain lethality in Ustilago maydis. Phytopathology 61, 50–53 (1971).

    Article  Google Scholar 

  7. Koltin, Y. & Day, P.R. Specificity of Ustilago maydis killer proteins. Appl. Microbiol. 30, 694–696 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Kandal, J. & Koltin, Y. Killer phenomenon in Ustilago maydis: comparison of the killer proteins. Exp. Mycol. 2, 270–278 (1978).

    Article  Google Scholar 

  9. Wilcoxson, R.R. & Saari, E.E. Bunt and smut disease of wheat: concepts and methods of disease management. Mexico, D.F.:Centro Internacional de Mejormamento de Maiz Y Trigo (1996).

  10. Winter, W., Krebs, H. & Bänzinger, I. Brandpilze und Streifenkrankheiten: Sortenanfälligkeit. Agrarforschung 2, 325–328 (1995).

    Google Scholar 

  11. Christensen, A.H., Sharrock, R.A. & Quail, P.H. Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol. Biol. 18, 675–689 (1992).

    Article  CAS  Google Scholar 

  12. Takimoto, I., Christensen, A.H., Quail, P.H., Uchimiya, H. & Toki, S. Non-systemic expression of a stress-responsive maize polyubiquitin gene (Ubi-1) in transgenic rice plants. Plant Mol. Biol. 26, 1007–1012 (1994).

    Article  CAS  Google Scholar 

  13. Park, C., Berry, J.O. & Bruenn, J.A. High-level secretion of a virally encoded anti-fungal toxin in transgenic tobacco. Plant Mol. Biol. 30, 359–366 (1996).

    Article  CAS  Google Scholar 

  14. Shew, D.H., & Lucas, G.B. Compendium of tobacco disease. (American Phytopathological Society Press, St. Paul, MN 1991).

    Google Scholar 

  15. Kinal, H., Park, C., Berry, J.O., Koltin, Y. & Bruenn, J.A. Processing and secretion of a virally encoded antifungal toxin in transgenic tobacco plants: evidence for a Kex2p pathway in plants. Plant Cell 7, 677–688 (1995).

    Article  CAS  Google Scholar 

  16. Finer, J.J., Vain, P., Jones, M.W. & McMullen, M.D. Development of the particle inflow gun for DNA delivery to plant cells. Plant Cell Rep. 11, 323–328 (1992).

    Article  CAS  Google Scholar 

  17. Blechl, A.E. & Anderson, O.D. Expression of a novel high-molecular weight glutenin subunit gene in transgenic wheat. Nat. Biotechnol. 14, 875–879 (1996).

    Article  CAS  Google Scholar 

  18. Barro, F. et al. Transformation of wheat with high molecular weight subunit genes results in improved functional properties. Nat. Biotechnol. 15, 1295–1299 (1997).

    Article  CAS  Google Scholar 

  19. De Block, M., Debrouwer, D. & Moens, T. The development of a nuclear male sterility system in wheat. Expression of the barnase gene under control of tapetum specific promoters. Theor. Appl. Genet. 95, 125–131 (1997).

    Article  CAS  Google Scholar 

  20. Altpeter, F., Vasil, V., Srivastava, V. & Vasil, I.K. Integration and expression of the high molecular weight glutenin subunit 1AX1 gene into wheat. Nat. Biotechnol. 14, 1155–1159 (1996).

    Article  CAS  Google Scholar 

  21. Christou, P. & Ford, T.L. The impact of selection parameters on the phenotype and genotype of transgenic rice callus and plants. Transgenic Res. 4, 44–51 (1995).

    Article  CAS  Google Scholar 

  22. Bliffeld, M., Mundy, J., Potrykus, I. and Fütterer, J. Genetic engineering of wheat for increased resistance to powdery mildew disease. Theor. Appl. Genet. 98, 1079–1086 (1999).

    Article  CAS  Google Scholar 

  23. Chen, W.P. et al. Development of wheat scab symptoms is delayed in transgenic wheat plants that constitutively express a rice thaumatin-like protein gene. Theor. Appl. Genet. 99, 755–760 (1999).

    Article  CAS  Google Scholar 

  24. Kramer, C., DiMaio, J., Carswell, G.K. & Shillito, D. Selection of transformed protoplast-derived Zea mays colonies with phosphinothricin and a novel assay using the pH indicator chlorophenol red. Planta 190, 454–458 (1993).

    Article  CAS  Google Scholar 

  25. De Block, M. et al. Engineering herbicide resistance in plants by expression of a de-toxifying enzyme. EMBO J. 6, 2513–2518 (1987).

    Article  CAS  Google Scholar 

  26. Weeks, J.T., Anderson, O.D. & Blechl, A.E. Rapid production of multiple independent lines of fertile transgenic wheat (Triticum aestivum). Plant Physiol. 102, 1077–1084 (1993).

    Article  CAS  Google Scholar 

  27. Graner, A., Siedler, H., Jahoor, A., Herrmann, R.G. & Wenzel, G. Assessment of the degree and type of polymorphism in barley (Hordeum vulgare). Theor. Appl. Genet. 80, 826–832 (1990).

    Article  CAS  Google Scholar 

  28. Fütterer, J. et al. In Gene transfer to plants. (eds Potrykus, I. & Spangenberg, G.) 215–290 (Springer-Verlag, New York, NY; 1995).

    Book  Google Scholar 

  29. Hammond-Kosak, K.E. in Molecular plant pathology, Vol. II. (eds Gurr, S.J., McPherson, M.J. & Bowles, D.J.) 15–21 (Oxford University Press, New York, NY; 1992).

    Google Scholar 

  30. Tao, J. et al. Ustilago maydis KP6 killer toxin: structure, expression in Saccharomyces cerevisiae, and relationship to other cellular toxins. Mol. Cell. Biol. 10, 1373–1381 (1990).

    Article  CAS  Google Scholar 

  31. Utz, H.F. PLABSTAT–Ein Computerprogramm zur statistischen Analyse von pflanzenzüchterischen Experimenten. Version 2M. (Institut für Pflanzenzüchtung, Saatgutforschung und Populationsgenetik, Universität Hohenheim; 1995).

    Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. R. Bilang (Federal Institute of Technology Zurich, Switzerland) for the pAct:bar, and Dr. G. Spangenberg (University La Trobe at Bundoora Victoria, Australia) for the pUbi:uidA constructs. The KP4 was kindly provided by Dr. J. Bruenn (State University of New York at Buffalo, USA). Furthermore, we thank S. Klarer, K. Konja, E. Fenner, and E. Calame-Doz for greenhouse and technical assistance, and Dr. P. King (Friedrich Miescher Institute, Basel, Switzerland) for correcting the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christof Sautter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clausen, M., Kräuter, R., Schachermayr, G. et al. Antifungal activity of a virally encoded gene in transgenic wheat. Nat Biotechnol 18, 446–449 (2000). https://doi.org/10.1038/74521

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/74521

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing