Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A genetic system for detection of protein nuclear import and export

Abstract

We have developed a simple genetic assay to detect active nuclear localization (NLS) and export signals (NES) on the basis of their function within yeast cells. The bacterial LexA protein was modified (mLexA) to abolish its intrinsic NLS and fused to the activation domain of the yeast Gal4p (Gal4AD) with or without the SV40 large T-antigen NLS. In the import assay, if a tested protein fused to mLexA-Gal4AD contains a functional NLS, it will enter the cell nucleus and activate the reporter gene expression. In the export assay, if a tested protein fused to mLexA-SV40 NLS-Gal4AD contains a functional NES, it will exit into the cytoplasm, decreasing the reporter gene expression. We tested this system with known NLS and NES and then used it to demonstrate a NES activity of the capsid protein of a plant geminivirus. This approach may help to identify, analyze, and select for proteins containing functional NLS and NES.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A schematic representation of pNIA and pNEA plasmids.
Figure 2: Nuclear import assay.
Figure 3: Effects of NLS and NLS-like or NES and NES-like motifs on induction of β-galactosidase expression in cells grown on minimal medium without tryptophan.
Figure 4: Nuclear export assay.
Figure 5: Detection of NES within TYLCV capsid protein.

Similar content being viewed by others

References

  1. Garcia-Bustos, J., Heitman, J. & Hall, M.N. Nuclear protein localization. Biochim. Biophys. Acta 1071, 83–101 (1991).

    Article  CAS  Google Scholar 

  2. Dingwall, C. Transport across the nuclear envelope: enigmas and explanations. BioEssays 13, 213–218 (1991).

    Article  CAS  Google Scholar 

  3. Pollard, V.W. & Malim, M.H. The HIV-1 Rev protein. Annu. Rev. Microbiol. 52, 491–532 (1998).

    Article  CAS  Google Scholar 

  4. Dobbelstein, M., Roth, J., Kimberly, W.T., Levine, A.J. & Shenk, T. Nuclear export of the E1B 55-kDa and E4 34-kDa adenoviral oncoproteins mediated by a rev-like signal sequence. EMBO J. 16, 4276–4284 (1997).

    Article  CAS  Google Scholar 

  5. Ullman, K.S., Powers, M.A. & Forbes, D.J. Nuclear export receptors: from importin to exportin. Cell 90, 967–970 (1997).

    Article  CAS  Google Scholar 

  6. Varagona, M.J., Schmidt, R.J. & Raikhel, N.V. Monocot regulatory protein Opaque-2 is localized in the nucleus of maize endosperm and transformed tobacco plants. Plant Cell 3, 105–113 (1991).

    Article  CAS  Google Scholar 

  7. Citovsky, V., Zupan, J., Warnick, D. & Zambryski, P. Nuclear localization of Agrobacterium VirE2 protein in plant cells. Science 256, 1803–1805 (1992).

    Article  Google Scholar 

  8. Guralnick, B., Thomsen, G. & Citovsky, V. Transport of DNA into the nuclei of Xenopus oocytes by a modified VirE2 protein of Agrobacterium. Plant Cell 8, 363–373 (1996).

    Article  CAS  Google Scholar 

  9. Goldfarb, D.S., Gariepy, J., Schoolnik, G. & Kornberg, R.D. Synthetic peptides as nuclear localization signals. Nature 322, 641–644 (1986).

    Article  CAS  Google Scholar 

  10. Kalderon, D., Roberts, B.L., Richardson, W.D. & Smith, A.E. A short amino acid sequence able to specify nuclear location. Cell 39, 499–509 (1984).

    Article  CAS  Google Scholar 

  11. Robbins, J., Dilworth, S.M., Laskey, R.A. & Dingwall, C. Two interdependent basic domains in nucleoplasmin nuclear targeting sequence: identification of a class of bipartite nuclear targeting sequence. Cell 64, 615–623 (1991).

    Article  CAS  Google Scholar 

  12. Roberts, B.L., Richardson, W.D. & Smith, A.E. The effect of protein context on nuclear location signal function. Cell 50, 465–475 (1987).

    Article  CAS  Google Scholar 

  13. Michael, W.M., Choi, M. & Dreyfuss, G. A nuclear export signal in hnRNP A1: a signal-mediated temperature-dependent nuclear protein export pathway. Cell 83, 415–422 (1995).

    Article  CAS  Google Scholar 

  14. Ossareh-Nazari, B., Bachelerie, F. & Dargemont, C. Evidence for a role of CRM1 in signal-mediated nuclear protein export. Science 278, 141–144 (1997).

    Article  CAS  Google Scholar 

  15. Schlenstedt, G., Hurt, E., Doye, V. & Silver, P. Reconstitution of nuclear protein transport with semi-intact yeast cells. J. Cell Biol. 123, 785–798 (1993).

    Article  CAS  Google Scholar 

  16. Newmeyer, D.D. & Forbes, D.J. Nuclear import can be separated into distinct steps in vitro: nuclear pore binding and translocation. Cell 52, 641–653 (1988).

    Article  CAS  Google Scholar 

  17. Ballas, N. & Citovsky, V. Nuclear localization signal binding protein from Arabidopsis mediates nuclear import of Agrobacterium VirD2 protein. Proc. Natl. Acad. Sci. USA 94, 10723–10728 (1997).

    Article  CAS  Google Scholar 

  18. Silver, P.A., Chiang, A. & Sadler, I. Mutations that alter both localization and production of a yeast nuclear protein. Genes Dev. 2, 707–717 (1988).

    Article  CAS  Google Scholar 

  19. Citovsky, V., Warnick, D. & Zambryski, P. Nuclear import of Agrobacterium VirD2 and VirE2 proteins in maize and tobacco. Proc. Natl. Acad. Sci. USA 91, 3210–3214 (1994).

    Article  CAS  Google Scholar 

  20. Howard, E., Zupan, J., Citovsky, V. & Zambryski, P. The VirD2 protein of A. tumefaciens contains a C-terminal bipartite nuclear localization signal: implications for nuclear uptake of DNA in plant cells. Cell 68, 109–118 (1992).

    Article  CAS  Google Scholar 

  21. Dingwall, C. & Laskey, R.A. Nuclear targeting sequences–a consensus? Trends Biochem. Sci. 16, 478–481 (1991).

    Article  CAS  Google Scholar 

  22. Lazarowitz, S.G. & Beachy, R.N. Viral movement proteins as probes for intracellular and intercellular trafficking in plants. Plant Cell 11, 535–548 (1999).

    Article  CAS  Google Scholar 

  23. Ghoshroy, S., Lartey, R., Sheng, J. & Citovsky, V. Transport of proteins and nucleic acids through plasmodesmata. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48, 27–49 (1997).

    Article  CAS  Google Scholar 

  24. Malim, M.H., Bohnlein, S., Hauber, J. & Cullen, B.R. Functional dissection of the HIV-1 Rev trans-activator-derivation of a trans-dominant repressor of Rev function. Cell 58, 205–214 (1989).

    Article  CAS  Google Scholar 

  25. Taagepera, S. et al. Nuclear-cytoplasmic shuttling of C-ABL tyrosine kinase. Proc. Natl. Acad. Sci. USA 95, 7457–7462 (1998).

    Article  CAS  Google Scholar 

  26. Bogerd, H.P., Fridell, R.A., Benson, R.E., Hua, J. & Cullen, B.R. Protein sequence requirements for function of the human T-cell leukemia virus type 1 Rex nuclear export signal delineated by a novel in vivo randomization-selection assay. Mol. Cell. Biol. 16, 4207–4214 (1996).

    Article  CAS  Google Scholar 

  27. Winans, S.C., Mantis, N.J., Chen, C.Y., Chang, C.H. & Han, D.C. Host recognition by the VirA, VirG two-component regulatory proteins of Agrobacterium tumefaciens. Res. Microbiol. 145, 461–473 (1994).

    Article  CAS  Google Scholar 

  28. Staswick, P.E. Novel regulation of vegetative storage protein genes. Plant Cell 2, 1–6 (1990).

    Article  CAS  Google Scholar 

  29. Davies, J.W. & Stanley, J. Geminivirus genes and vectors. Trends Genet. 5, 77–81 (1989).

    Article  CAS  Google Scholar 

  30. Navot, N., Pichersky, E., Zeidan, M., Zamir, D. & Czosnek, H. Tomato yellow leaf curl virus: a whitefly transmitted geminivirus with a single genomic component. Virology 185, 151–161 (1991).

    Article  CAS  Google Scholar 

  31. Kunik, T., Palanichelvam, K., Czosnek, H., Citovsky, V. & Gafni, Y. Nuclear import of the capsid protein of tomato yellow leaf curl virus (TYLCV) in plant and insect cells. Plant J. 13, 393–399 (1998).

    Article  CAS  Google Scholar 

  32. Zervos, A.S., Gyuris, J. & Brent, R. Mxi1, a protein that specifically interacts with Max to bind Myc-Max recognition sites. Cell 72, 223–232 (1993).

    Article  CAS  Google Scholar 

  33. Hollenberg, S.M., Sternglanz, R., Cheng, P.F. & Weintraub, H. Identification of a new family of tissue-specific basic helix-loop-helix proteins with a two-hybrid system. Mol. Cell. Biol. 15, 3813–3822 (1995).

    Article  CAS  Google Scholar 

  34. Vidal, M., Brachmann, R.K., Fattaey, A., Harlow, E. & Boeke, J.D. Reverse two-hybrid and one-hybrid systems to detect dissociation of protein–protein and DNA–protein interactions. Proc. Natl. Acad. Sci. USA 93, 10315–10320 (1996).

    Article  CAS  Google Scholar 

  35. Cullen, B.R. et al. Subcellular localization of the human immunodeficiency virus trans-acting art gene product. J. Virol. 62, 2498–2501 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Fischer, U. et al. Evidence that HIV-1 Rev directly promotes the nuclear export of unspliced RNA. EMBO J. 13, 4105–4112 (1994).

    Article  CAS  Google Scholar 

  37. Ueki, N. et al. Selection system for genes encoding nuclear-targeted proteins. Nat. Biotechnol. 16, 1338–1342 (1998).

    Article  CAS  Google Scholar 

  38. Nigg, E.A. Nucleocytoplasmic transport: signals, mechanisms and regulation. Nature 386, 779–787 (1997).

    Article  CAS  Google Scholar 

  39. Truant, R., Fridell, R.A., Benson, R.E., Bogerd, H. & Cullen, B.R. Identification and functional characterization of a novel nuclear localization signal present in the yeast Nab2 poly(A)+ RNA binding protein. Mol. Cell. Biol. 18, 1449–1458 (1998).

    Article  CAS  Google Scholar 

  40. Rosenblum, J.S., Pemberton, L.F., Bonifaci, N. & Blobel, G. Nuclear import and the evolution of a multifunctional RNA-binding protein. J. Cell Biol. 143, 887–899 (1998).

    Article  CAS  Google Scholar 

  41. Kaiser, C., Michaelis, S. & Mitchell, A. Methods in yeast genetics (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY; 1994).

    Google Scholar 

  42. Citovsky, V., De Vos, G. & Zambryski, P. Single-stranded DNA binding protein encoded by the virE locus of Agrobacterium tumefaciens. Science 240, 501–504 (1988).

    Article  CAS  Google Scholar 

  43. Jefferson, R.A., Burgess, S.M. & Hirsh, D. β-Glucuronidase from Escherichia coli as a gene-fusion marker. Proc. Natl. Acad. Sci. USA 83, 8447–8451 (1986).

    Article  CAS  Google Scholar 

  44. Goelet, P. et al. Nucleotide sequence of tobacco mosaic virus RNA. Proc. Natl. Acad. Sci. USA 79, 5818–5822 (1982).

    Article  CAS  Google Scholar 

  45. Winans, S.C., Ebert, P.R., Stachel, S.E., Gordon, M.P. & Nester, E.W. A gene essential for Agrobacterium virulence is homologous to a family of positive regulatory loci. Proc. Natl. Acad. Sci. USA 83, 8278–8282 (1986).

    Article  CAS  Google Scholar 

  46. Staswick, P.E. Soybean vegetative storage protein structure and gene expression. Correction. Plant Physiol. 89, 717 (1988).

  47. Staswick, P.E. Soybean vegetative storage protein structure and gene expression. Plant Physiol. 87, 250–254 (1988).

    Article  CAS  Google Scholar 

  48. Stachel, S.E., An, G., Flores, C. & Nester, E.W. A Tn3 lacZ transposon for the random generation of β-galactosidase gene fusions: application to the analysis of gene expression in Agrobacterium. EMBO J. 4, 891–898 (1985).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Aaron Neiman for his help in devising the one-hybrid assay, Rolf Sternglanz for critical reading of this manuscript, and Hangil Park, Ann Sutton, and Nancy Hollingsworth for guidance with yeast techniques. This work was supported by grants from NIH, NSF, and USDA to V.C., and from BARD to V.C. and Y.G., by a scholarship from the Council for Tobacco Research to C.D., and by a scholarship from TUBITAK-NATO Science Program to F.G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitaly Citovsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rhee, Y., Gurel, F., Gafni, Y. et al. A genetic system for detection of protein nuclear import and export. Nat Biotechnol 18, 433–437 (2000). https://doi.org/10.1038/74500

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/74500

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing