Article | Published:

Identification of in vivo DNA targets of chromatin proteins using tethered Dam methyltransferase

Nature Biotechnologyvolume 18pages424428 (2000) | Download Citation



We have developed a novel technique, named DamID, for the identification of DNA loci that interact in vivo with specific nuclear proteins in eukaryotes. By tethering Escherichia coli DNA adenine methyltransferase (Dam) to a chromatin protein, Dam can be targeted in vivo to native binding sites of this protein, resulting in local DNA methylation. Sites of methylation can subsequently be mapped using methylation-specific restriction enzymes or antibodies. We demonstrate the successful application of DamID both in Drosophila cell cultures and in whole flies. When Dam is tethered to the DNA-binding domain of GAL4, targeted methylation is limited to a region of a few kilobases surrounding a GAL4 binding sequence. Using DamID, we identified a number of expected and unexpected target loci for Drosophila heterochromatin protein 1. DamID has potential for genome-wide mapping of in vivo targets of chromatin proteins in various eukaryotes.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Simpson, R.T. In vivo methods to analyze chromatin structure. Curr. Opin. Genet. Dev. 9, 225–229 ( 1999).

  2. 2

    Solomon, M.J., Larsen, P.L. & Varshavsky, A. Mapping protein–DNA interactions in vivo with formaldehyde: evidence that histone H4 is retained on a highly transcribed gene. Cell 53, 937–947 (1988).

  3. 3

    Orlando, V., Strutt, H. & Paro, R. Analysis of chromatin structure by in vivo formaldehyde cross-linking. Methods 11, 205– 214 (1997).

  4. 4

    Law, A., Hirayoshi, K., O'Brien, T. & Lis, J.T. Direct cloning of DNA that interacts in vivo with a specific protein: application to RNA polymerase II and sites of pausing in Drosophila. Nucleic Acids Res. 26, 919–924 (1998).

  5. 5

    Lee, J.S., Lee, C.H. & Chung, J.H. Studying the recruitment of Sp1 to the beta-globin promoter with an in vivo method: protein position identification with nuclease tail (PIN*POINT). Proc. Natl. Acad. Sci. USA 95, 969–974 (1998).

  6. 6

    Xu, G.L. & Bestor, T.H. Cytosine methylation targetted to pre-determined sequences. Nat. Genet. 17, 376–378 (1997).

  7. 7

    Gottschling, D.E. Telomere-proximal DNA in Saccharomyces cerevisiae is refractory to methyltransferase activity in vivo. Proc. Natl. Acad. Sci. USA 89, 4062–4065 ( 1992).

  8. 8

    Singh, J. & Klar, A.J. Active genes in budding yeast display enhanced in vivo accessibility to foreign DNA methylases: a novel in vivo probe for chromatin structure of yeast. Genes Dev. 6, 186–196 (1992).

  9. 9

    Kladde, M.P. & Simpson, R.T. Positioned nucleosomes inhibit Dam methylation in vivo. Proc. Natl. Acad. Sci. USA 91, 1361–1365 (1994).

  10. 10

    Wines, D.R., Talbert, P.B., Clark, D.V. & Henikoff S. Introduction of a DNA methyltransferase into Drosophila to probe chromatin structure in vivo. Chromosoma 104, 332– 340 (1996).

  11. 11

    Lyko, F. et al. Mammalian (cytosine-5) methyltransferases cause genomic DNA methylation and lethality in Drosophila. Nat. Genet. 23, 363–366 (1999).

  12. 12

    Fischer, J.A., Giniger, E., Maniatis, T. & Ptashne, M. GAL4 activates transcription in Drosophila. Nature 332, 853–856 (1988).

  13. 13

    Rørth, P. A modular misexpression screen in Drosophila detecting tissue-specific phenotypes. Proc. Natl. Acad. Sci. USA 93, 12418–12422 (1996).

  14. 14

    Lie, Y.S. & Petropoulos, C.J. Advances in quantitative PCR technology: 5′ nuclease assays. Curr. Opin. Biotechnol. 9, 43–48 (1998).

  15. 15

    Caizzi, R., Caggese, C. & Pimpinelli, S. Bari-1, a new transposon-like family in Drosophila melanogaster with a unique heterochromatic organization. Genetics 133, 335–345 ( 1993).

  16. 16

    Frommer, G., Schuh, R. & Jackle, H. Localized expression of a novel micropia-like element in the blastoderm of Drosophila melanogaster is dependent on the anterior morphogen bicoid. Chromosoma 103, 82– 89 (1994).

  17. 17

    Goldstein, A. Biostatistics. An introductory text. (MacMillan Co., New York, NY; 1964).

  18. 18

    James, T.C., et al. Distribution patterns of HP1, a heterochromatin-associated nonhistone chromosomal protein of Drosophila. Eur. J. Cell. Biol. 50, 170–180 ( 1989).

  19. 19

    Platero, J.S., Hartnett, T. & Eissenberg, J.C. Functional analysis of the chromo domain of HP1. EMBO J. 14, 3977–3986 ( 1995).

  20. 20

    Bringmann, P. & Lührmann, R. Antibodies specific for N6-methyladenosine react with intact snRNPs U2 and U4/U6. FEBS Lett. 213 , 309–315 (1987).

  21. 21

    Boivin, A. & Dura, J.-M. In vivo chromatin accessibility correlates with gene silencing in Drosophila. Genetics 150, 1539–1549 (1998).

  22. 22

    Fitch, D.H., Strausbaugh, L.D. & Barrett, V. On the origins of tandemly repeated genes: does histone gene copy number in Drosophila reflect chromosomal location? Chromosoma 99, 118–124 ( 1990).

  23. 23

    Hilliker, A.J., Appels, R. & Schalet, A. The genetic analysis of D. melanogaster heterochromatin . Cell 21, 607–619 (1980).

  24. 24

    Scheer, U. & Hock, R. Structure and function of the nucleolus . Curr. Opin. Cell. Biol. 11, 385– 390 (1999).

  25. 25

    Barras, F. & Marinus, M.G. The great GATC: DNA methylation in E. coli. Trends Genet. 5, 139– 143 (1989).

  26. 26

    Pease, A.C. et al. Light-generated oligonucleotide arrays for rapid DNA sequence analysis. Proc. Natl. Acad. Sci. USA 91, 5022–5026 (1994).

  27. 27

    Schena, M., Shalon, D., Davis, R.W. & Brown, P.O. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467–470 ( 1995).

  28. 28

    Henikoff, S., Ahmad, K., Platero, J.S. & van Steensel, B. Heterochromatic deposition of centromeric histone H3-like proteins. Proc. Natl. Acad. Sci. USA 97, 716–721 (2000).

  29. 29

    van Steensel, B. et al. Localization of the glucocorticoid receptor in discrete clusters in the cell nucleus. J. Cell. Sci. 108, 3003–3011 (1995).

Download references


We thank Dr. R. Lührmann for providing anti-m6A-antibody; S. Elgin for anti-HP1 antibody; Joel Eissenberg and Susan Parkhurst for plasmids; Keith Kerkof for TaqMan PCR advice; Kami Ahmad for help with microinjection and fly genetics and for suggesting the DamID name; Jorja Henikoff for help with statistical analysis; Peter Kim and Judith O'Brien for technical assistance; and members of our lab for unlimited enthusiasm and helpful suggestions.

Author information


  1. Fred Hutchinson Cancer Research Center and Howard Hughes Medical Institute, 1100 Fairview Ave N, Seattle , 98109, WA

    • Bas van Steensel
    •  & Steven Henikoff


  1. Search for Bas van Steensel in:

  2. Search for Steven Henikoff in:

Corresponding author

Correspondence to Bas van Steensel.

About this article

Publication history



Issue Date


Further reading