Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Large-scale functional analysis using peptide or protein arrays

Abstract

The array format for analyzing peptide and protein function offers an attractive experimental alternative to traditional library screens. Powerful new approaches have recently been described, ranging from synthetic peptide arrays to whole proteins expressed in living cells. Comprehensive sets of purified peptides and proteins permit high-throughput screening for discrete biochemical properties, whereas formats involving living cells facilitate large-scale genetic screening for novel biological activities. In the past year, three major genome-scale studies using yeast as a model organism have investigated different aspects of protein function, including biochemical activities, gene disruption phenotypes, and protein–protein interactions. Such studies show that protein arrays can be used to examine in parallel the functions of thousands of proteins previously known only by their DNA sequence.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Screening for function using libraries and arrays.
Figure 2: Arrays may be nonliving or living.

Similar content being viewed by others

References

  1. Debouck, C. & Goodfellow, P.N. DNA microarrays in drug discovery and development. Nat. Genet. 21(1 Suppl), 48–50 (1999).

    Article  CAS  Google Scholar 

  2. Gerhold, D., Rushmore, T. & Caskey, C.T. DNA chips: promising toys have become powerful tools. Trends Biochem. Sci. 24, 168–173 (1999).

    Article  CAS  Google Scholar 

  3. Botstein, D. & Cherry, J.M. Molecular linguistics: extracting information from gene and protein sequences. Proc. Natl. Acad. Sci. USA. 94, 5506–5507 (1997).

    Article  CAS  Google Scholar 

  4. Pease, A.C. et al. Light-generated oligonucleotide arrays for rapid DNA sequence analysis. Proc. Natl. Acad. Sci. USA 91, 5022–5026 (1994).

    Article  CAS  Google Scholar 

  5. Celis, J.E. & Gromov, P. 2D protein electrophoresis: can it be perfected? Curr. Opin. Biotechnol. 10, 16–21 (1999).

    Article  CAS  Google Scholar 

  6. Quadroni, M. & James, P. Proteomics and automation. Electrophoresis 20, 664–677 (1999).

    Article  CAS  Google Scholar 

  7. Andersen, J.S., Svensson, B. & Roepstorff, P. Electrospray ionization and matrix assisted laser desorption/ionization mass spectrometry: powerful analytical tools in recombinant protein chemistry. Nat. Biotechnol. 14, 449–457 (1996).

    Article  CAS  Google Scholar 

  8. Bork, P. et al. Predicting function: from genes to genomes and back. J. Mol. Biol. 283, 707–725 (1998).

    Article  CAS  Google Scholar 

  9. Marcotte, E.M., Pellegrini, M., Thompson, M.J., Yeates, T.O. & Eisenberg, D. A combined algorithm for genome-wide prediction of protein function. Nature 402, 83–86 (1999).

    Article  CAS  Google Scholar 

  10. Lam, K.S. et al. A new type of synthetic peptide library for identifying ligand-binding activity. Nature 354, 82–84 (1991).

    Article  CAS  Google Scholar 

  11. Houghten, R.A. et al. Generation and use of synthetic peptide combinatorial libraries for basic research and drug discovery. Nature 354, 84–86 (1991).

    Article  CAS  Google Scholar 

  12. Geysen, H.M., Meloen, R.H. & Barteling, S.J. Use of peptide synthesis to probe viral antigens for epitopes to a resolution of a single amino acid. Proc. Natl. Acad. Sci. USA 81, 3998–4002 (1984).

    Article  CAS  Google Scholar 

  13. Maeji, N.J. et al. Systematic screening for bioactive peptides. Pept. Res. 4, 142–146 (1991).

    CAS  PubMed  Google Scholar 

  14. Gausepohl, H., Boulin, C., Kraft, M. & Frank, R.W. Automated multiple peptide synthesis. Pept. Res. 5, 315–320 (1992).

    CAS  PubMed  Google Scholar 

  15. Kramer, A. & Schneider-Mergener, J. Synthesis and screening of peptide libraries on continuous cellulose membrane supports. Methods Mol. Biol. 87, 25–39 (1998).

    CAS  PubMed  Google Scholar 

  16. Kramer, A., Volkmer-Engert, R., Malin, R., Reineke, U. & Schneider-Mergener, J. Simultaneous synthesis of peptide libraries on single resin and continuous cellulose membrane supports: examples for the identification of protein, metal and DNA binding peptide mixtures. Pept. Res. 6, 314–319 (1993).

    CAS  PubMed  Google Scholar 

  17. Reineke, U. et al. Mapping protein-protein contact sites using cellulose-bound peptide scans. Mol. Divers. 1, 141–148 (1996).

    Article  CAS  Google Scholar 

  18. Reuter, M. et al. Regions of endonuclease EcoRII involved in DNA target recognition identified by membrane-bound peptide repertoires. J. Biol. Chem. 274, 5213–5221 (1999).

    Article  CAS  Google Scholar 

  19. Reineke, U. et al. A synthetic mimic of a discontinuous binding site on interleukin-10. Nat. Biotechnol. 17, 271–275 (1999).

    Article  CAS  Google Scholar 

  20. Munch, G. et al. Amino acid specificity of glycation and protein-AGE crosslinking reactivities determined with a dipeptide SPOT library. Nat. Biotechnol. 17, 1006–1010 (1999).

    Article  CAS  Google Scholar 

  21. Fodor, S.P. et al. Light-directed, spatially addressable parallel chemical synthesis. Science 251, 767–773 (1991).

    Article  CAS  Google Scholar 

  22. Cwirla, S.E., Peters, E.A., Barrett, R.W. & Dower, W.J. Peptides on phage: a vast library of peptides for identifying ligands. Proc. Natl. Acad. Sci. USA. 87, 6378–6382 (1990).

    Article  CAS  Google Scholar 

  23. Molina, F., Laune, D., Gougat, C., Pau, B. & Granier, C. Improved performances of spot multiple peptide synthesis. Pept. Res. 9, 151–155 (1996).

    CAS  PubMed  Google Scholar 

  24. Ekins, R. & Chu, F. Immunoassay and other ligand assays: present status and future trends. J. Int. Fed. Clin. Chem. 9, 100–109 (1997).

    CAS  PubMed  Google Scholar 

  25. Rowe, C.A. et al. Array biosensor for simultaneous identification of bacterial, viral, and protein analytes. Anal. Chem. 71, 3846–3852 (1999).

    Article  CAS  Google Scholar 

  26. Silzel, J.W., Cercek, B., Dodson, C., Tsay, T. & Obremski, R.J. Mass-sensing, multianalyte microarray immunoassay with imaging detection. Clin. Chem. 44, 2036–2043 (1998).

    CAS  PubMed  Google Scholar 

  27. Hutchens, T.W. & Yip, T-T. New desorption strategies for the mass spectrometric analysis of macromolecules. Rapid Commun. Mass Spectrom. 7, 576–580 (1993).

    Article  CAS  Google Scholar 

  28. Frears, E.R., Stephens, D.J., Walters, C.E., Davies, H. & Austen, B.M. The role of cholesterol in the biosynthesis of beta-amyloid. Neuroreport 10, 1699–1705 (1999).

    Article  CAS  Google Scholar 

  29. Bieri, C., Ernst, O.P., Heyse, S., Hofmann, K.P. & Vogel, H. Micropatterned immobilization of a G protein-coupled receptor and direct detection of G protein activation. Nat. Biotechnol. 17, 1105–1108 (1999).

    Article  CAS  Google Scholar 

  30. Martzen, M.R. et al. A biochemical genomics approach for identifying genes by the activity of their products. Science 286, 1153–1155 (1999).

    Article  CAS  Google Scholar 

  31. Oldenburg, K.R., Vo, K.T., Michaelis, S. & Paddon, C. Recombination-mediated PCR-directed plasmid construction in vivo in yeast. Nucleic Acids Res. 25, 451–452 (1997).

    Article  CAS  Google Scholar 

  32. Zhang, Y., Buchholz, F., Muyrers, J.P. & Stewart, A.F. A new logic for DNA engineering using recombination in Escherichia coli. Nat. Genet. 20, 123–128 (1998).

    Article  CAS  Google Scholar 

  33. Heyman, J.A. et al. Genome-scale cloning and expression of individual open reading frames using topoisomerase I-mediated ligation. Genome Res. 9, 383–392 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Nilsson, J., Stahl, S., Lundeberg, J., Uhlen, M. & Nygren, P.A. Affinity fusion strategies for detection, purification, and immobilization of recombinant proteins. Protein Expr. Purif. 11, 1–16 (1997).

    Article  CAS  Google Scholar 

  35. Rigaut, G. et al. A generic protein purification method for protein complex characterization and proteome exploration. Nat. Biotechnol. 17, 1030–1032 (1999).

    Article  CAS  Google Scholar 

  36. Uetz, P. et al. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403, 623–627 (2000).

    Article  CAS  Google Scholar 

  37. Goffeau, A. et al. Life with 6000 genes. Science 274, 546, 563–567 (1996).

    Article  CAS  Google Scholar 

  38. Wang, M.M. & Reed, R.R. Molecular cloning of the olfactory neuronal transcription factor Olf-1 by genetic selection in yeast. Nature 364, 121–126 (1993).

    Article  CAS  Google Scholar 

  39. Sengupta, D.J., Wickens, M. & Fields, S. Identification of RNAs that bind to a specific protein using the yeast three-hybrid system. RNA 5, 596–601 (1999).

    Article  CAS  Google Scholar 

  40. Belshaw, P.J., Ho, S.N., Crabtree, G.R. & Schreiber, S.L. Controlling protein association and subcellular localization with a synthetic ligand that induces heterodimerization of proteins. Proc. Natl. Acad. Sci. USA 93, 4604–4607 (1996).

    Article  CAS  Google Scholar 

  41. Licitra, E.J. & Liu, J.O. A three-hybrid system for detecting small ligand-protein receptor interactions. Proc. Natl. Acad. Sci. USA 93, 12817–12821 (1996).

    Article  CAS  Google Scholar 

  42. Ross-Macdonald, P. et al. Large-scale analysis of the yeast genome by transposon tagging and gene disruption. Nature 402, 413–418 (1999).

    Article  CAS  Google Scholar 

  43. Mattheakis, L.C., Bhatt, R.R. & Dower, W.J. An in vitro polysome display system for identifying ligands from very large peptide libraries. Proc. Natl. Acad. Sci. USA 91, 9022–9026 (1994).

    Article  CAS  Google Scholar 

  44. Roberts, R.W. & Szostak, J.W. RNA-peptide fusions for the in vitro selection of peptides and proteins. Proc. Natl. Acad. Sci. USA 94, 12297–12302 (1997).

    Article  CAS  Google Scholar 

  45. Bier, F.F., Kleinjung, F., Ehrentreich-Forster, E. & Scheller, F.W. Changing functionality of surfaces by directed self-assembly using oligonucleotides–the oligo-tag. Biotechniques 27, 752–760 (1999).

    Article  CAS  Google Scholar 

  46. Winzeler, E.A. et al. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285, 901–906 (1999).

    Article  CAS  Google Scholar 

  47. Hunter, C.P. Genetics: a touch of elegance with RNAi. Curr. Biol. 9, R440–R442 (1999).

    Article  CAS  Google Scholar 

  48. Pollok, B.A. & Heim, R. Using GFP in FRET-based applications. Trends Cell Biol. 9, 57–60 (1999).

    Article  CAS  Google Scholar 

  49. Mazzola, L.T. & Fodor, S.P. Imaging biomolecule arrays by atomic force microscopy. Biophys. J. 68, 1653–1660 (1995).

    Article  CAS  Google Scholar 

  50. Frederickson, R.M. Macromolecular matchmaking: advances in two-hybrid and related technologies. Curr. Opin. Biotechnol. 9, 90–96 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Michael DeVit, Andrew Emili, Stanley Fields, Stephen McCraith, Eric Phizicky, Chandra Tucker, and Peter Uetz for comments on the manuscript, and Deborah Diamond for helpful suggestions. This work was supported by NIH grants GM54415 and RR11823 and a grant from the Merck Genome Research Institute. A.Q.E. is a research associate of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerard Cagney.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Emili, A., Cagney, G. Large-scale functional analysis using peptide or protein arrays. Nat Biotechnol 18, 393–397 (2000). https://doi.org/10.1038/74442

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/74442

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing