Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Directed evolution of thymidine kinase for AZT phosphorylation using DNA family shuffling

Abstract

The thymidine kinase (TK) genes from herpes simplex virus (HSV) types 1 and 2 were recombined in vitro with a technique called DNA family shuffling. A high-throughput robotic screen identified chimeras with an enhanced ability to phosphorylate zidovudine (AZT). Improved clones were combined, reshuffled, and screened on increasingly lower concentrations of AZT. After four rounds of shuffling and screening, two clones were isolated that sensitize Escherichia coli to 32-fold less AZT compared with HSV-1 TK and 16,000-fold less than HSV-2 TK. Both clones are hybrids derived from several crossover events between the two parental genes and carry several additional amino acid substitutions not found in either parent, including active site mutations. Kinetic measurements show that the chimeric enzymes had acquired reduced KM for AZT as well as decreased specificity for thymidine. In agreement with the kinetic data, molecular modeling suggests that the active sites of both evolved enzymes better accommodate the azido group of AZT at the expense of thymidine. Despite the overall similarity of the two chimeric enzymes, each contains key contributions from different parents in positions influencing substrate affinity. Such mutants could be useful for anti-HIV gene therapy, and similar directed-evolution approaches could improve other enzyme–prodrug combinations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Titration of growth inhibition of TK-expressing KY895 cells by AZT.
Figure 2: (A) Shuffling of the two parental TK genes creates a library of chimeric genes.
Figure 3: (A) Minimized three-dimensional model of cycle 4 TK with bound ADP and dTMP showing the location of the five nonconserved amino acids (capped sticks).
Figure 4: Comparison of the hydrogen-bonding patterns of the binding sites of HSV-1 TK, HSV-2 TK, and cycle 4 TK with dTMP and AZT.

Similar content being viewed by others

References

  1. Stemmer, W.P.C. DNA shuffling by random fragmentation and reassembly: in vitro recombination for molecular evolution. Proc. Natl. Acad. Sci. USA 91, 10747–10751 (1994).

    Article  CAS  Google Scholar 

  2. Stemmer, W.P.C. Rapid evolution of a protein in vitro by DNA shuffling. Nature 370, 389–391 ( 1994).

    Article  CAS  Google Scholar 

  3. Zhang, J.-H., Dawes, G. & Stemmer, W.P.C. Directed evolution of a fucosidase from a galactosidase by DNA shuffling and screening. Proc. Natl. Acad. Sci. USA 94, 4504–4509 (1997).

    Article  CAS  Google Scholar 

  4. Crameri, A., Whitehorn, E.A., Tate, E. & Stemmer, W.P.C. Improved green fluorescent protein by molecular evolution using DNA shuffling. Nat. Biotechnol. 14, 315– 319 (1996).

    Article  CAS  Google Scholar 

  5. Buchholz, F., Angrand, P.-O. & Stewart, A.F. Improved properties of FLP recombinase evolved by cycling mutagenesis. Nat. Biotechnol. 16, 657–662 (1998).

    Article  CAS  Google Scholar 

  6. Crameri, A., Raillard, S.-A., Bermudez, E. & Stemmer, W.P.C. DNA shuffling of a family of genes from diverse species accelerates directed evolution. Nature 391, 288– 291 (1998).

    Article  CAS  Google Scholar 

  7. Kumamaru, T., Suenaga, H., Mitsuoka, M., Watanabe, T. & Furukawa, K. Enhanced degradation of polychlorinated biphenyls by directed evolution of biphenyl dioxygenase. Nat. Biotechnol. 16, 663–666 ( 1998).

    Article  CAS  Google Scholar 

  8. Hirsch, M.S., Kaplan, J.C. & D'Aquila, R.T. in Fields virology (eds. Fields, B.N., Knipe, D.M. & Howley, P.M.) 431–466 (Lippincott-Raven, Philadelphia, 1996).

    Google Scholar 

  9. Martin, L.-A. & Lemoine, N.R. Direct cell killing by suicide genes. Cancer Metastasis Rev. 15, 301– 316 (1996).

    Article  CAS  Google Scholar 

  10. Guettari, N., Loubiere, L., Brisson, E. & Klatzmann, D. Use of herpes simplex virus thymidine kinase to improve the antiviral activity of zidovudine. Virology 235, 398– 405 (1997).

    Article  CAS  Google Scholar 

  11. Drake, R.R. et al. Metabolism and activities of 3´-azido-2´,3´-dideoxythymidine and 2´,3´-didehydro-2´,3´-dideoxythymidine in herpesvirus thymidine kinase transduced T-lymphocytes. Antiviral Res. 35, 177–185 (1997).

    Article  CAS  Google Scholar 

  12. Gentry, G.A. Viral thymidine kinases and their relatives. Pharmacol. Ther. 54, 319–355 (1992).

    Article  CAS  Google Scholar 

  13. Munir, K.M., French, D.C. & Loeb, L.A. Thymidine kinase mutants obtained by random sequence selection. Proc. Natl. Acad. Sci. USA 90, 4012–4016 (1993).

    Article  CAS  Google Scholar 

  14. Black, M.E. & Loeb, L.A. Identification of important residues within the putative nucleoside binding site of HSV-1 thymidine kinase by random sequence selection: analysis of selected mutants in vitro. Biochemistry 32, 11618–11626 ( 1993).

    Article  CAS  Google Scholar 

  15. Black, M.E., Newcomb, T.G., Wilson, H.-M.P. & Loeb, L.A. Creation of drug-specific herpes simplex virus type 1 thymidine kinase mutants for gene therapy. Proc. Natl. Acad. Sci. USA 93, 3525–3529 (1996).

    Article  CAS  Google Scholar 

  16. Moore, J.C., Jin, H.-M., Kuchner, O. & Arnold, F.H. Strategies for the in vitro evolution of protein function: enzyme evolution by random recombination of improved sequences. J. Mol. Biol. 273, 336–347 (1997).

    Article  Google Scholar 

  17. Wild, K., Bohner, T., Folkers, G. & Schulz, G.E. The structures of thymidine kinase from Herpes simplex virus type 1 in complex with substrates and a substrate analog. Protein Sci. 6, 2097–2106 (1997).

    Article  CAS  Google Scholar 

  18. Brown, D.G. et al. 1995. Crystal structures of the thymidine kinase from herpes simplex virus type-1 in complex with deoxythymidine and ganciclovir. Nat. Struct. Biol. 2, 876– 881 (1995).

    Article  CAS  Google Scholar 

  19. Champness, J.N. et al. Exploring the active site of herpes simplex virus type-1 thymidine kinase by x-ray crystallography of complexes with acyclovir and other ligands. Struct. Funct. Genet. 32, 350– 361 (1998).

    Article  CAS  Google Scholar 

  20. Kussmann-Gerber, S., Kuonen, O., Folkers, G., Pilger, B.D. & Scapozza, L. Drug resistance of herpes simplex virus type 1: structural considerations on the molecular level of the thymidine kinase. Eur. J. Biochem. 255, 472–481 (1998).

    Article  CAS  Google Scholar 

  21. Lavie, A. et al. Structure of thymidylate kinase reveals the cause behind the limiting step in AZT activation. Nat. Struct. Biol. 4, 601–604 (1997).

    Article  CAS  Google Scholar 

  22. Lavie, A. et al. The bottleneck in AZT activation. Nat. Med. 3, 922–924 (1997).

    Article  CAS  Google Scholar 

  23. Balzarini, J. et al. Improving AZT efficacy. Nat. Med. 4, 132 (1998).

    Article  CAS  Google Scholar 

  24. Bouayadi, K. et al. Overexpression of DNA polymerase b sensitizes mammalian cells to 2´,3´-didexoycytidine and 3´-azidó-3´-deoxythymidine. Cancer Res. 57, 110–116 ( 1997).

    CAS  PubMed  Google Scholar 

  25. Patten, P.A., Howard, R.J. & Stemmer, W.P.C. Applications of DNA shuffling to pharmaceuticals and vaccines. Curr. Opin. Biotechnol. 8, 724–733 (1997).

    Article  CAS  Google Scholar 

  26. Igarashi, K., Hiraga, S. & Yura, T. A deoxythymidine kinase deficient mutant of Escherichia coli. II. Mapping and transduction studies with phage phi 80. Genetics 57, 643–654 ( 1967).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Cleland, W.W. Statistical analysis of enzyme data. Methods Enzymol. 63, 103–138 (1979).

    Article  CAS  Google Scholar 

  28. Xu, Y. et al. X-ray analysis of azido-thymidine diphosphate binding to nucleoside diphosphate kinase. Proc. Natl. Acad. Sci. USA 94, 7162 –7165 (1997).

    Article  CAS  Google Scholar 

  29. Perlman, D.A. et al. AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules. Comp. Phys. Commun. 91, 1–41 ( 1995).

    Article  Google Scholar 

  30. Jorgensen, W.L., Chrasekhar, J., Madura, J.D., Impey, R.W. & Klein, M. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983).

    Article  CAS  Google Scholar 

  31. Laskowski, R.A., MacArthur, M.W., Moos, D.S. & Thornton, J.M.J. PROCHECK: a program to check the stereochemical quality of protein structures. Appl. Cryst. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  32. Goodford, P.J. A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. J. Med. Chem. 28, 849–857 (1985).

    Article  CAS  Google Scholar 

  33. Wade, R.C. & Goodford, P.J. Further development of hydrogen bond functions for use in determining energetically favorable binding sites on molecules of known structure. J. Med. Chem. 36, 140–156 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Thanks to Sun-Ai Raillard, Glenn Dawes, and Steve delCardayre for technical assistance, to the Computational Center of the ETH Zürich for computer time, and to Claus Krebber, Larry Loeb, Frances Arnold, and Rolf Zinkernagel for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Willem P.C. Stemmer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christians, F., Scapozza, L., Crameri, A. et al. Directed evolution of thymidine kinase for AZT phosphorylation using DNA family shuffling. Nat Biotechnol 17, 259–264 (1999). https://doi.org/10.1038/7003

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/7003

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing