Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Spliceosome-mediated RNA trans-splicing as a tool for gene therapy

A Corrigendum to this article was published on 01 March 2001

An Erratum to this article was published on 01 June 1999

Abstract

We have developed RNA molecules capable of effecting spliceosome-mediated RNA trans-splicing reactions with a target messenger RNA precursor (pre-mRNA). Targeted trans-splicing was demonstrated in a HeLa nuclear extract, cultured human cells, and H1299 human lung cancer tumors in athymic mice. Trans-splicing between a cancer-associated pre-mRNA encoding the β-subunit of human chorionic gonadotropin gene 6 and pre– trans-splicing molecule (PTM) RNA was accurate both in vitro and in vivo. Comparison of targeted versus nontargeted trans-splicing revealed a moderate level of specificity, which was improved by the addition of an internal inverted repeat encompassing the PTM splice site. Competition between cis- and trans-splicing demonstrated that cis-splicing can be inhibited by trans-splicing. RNA repair in a splicing model of a nonfunctional lacZ transcript was effected in cells by a PTM, which restored significant β-galactosidase activity. These observations suggest that spliceosome-mediated RNA trans-splicing may represent a general approach for reprogramming the sequence of targeted transcripts, providing a novel approach to gene therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Model PTM constructs and targeted trans-splicing strategy.
Figure 2: Improvement of trans-splicing specificity by the inclusion of a "safety" stem into PTMs.
Figure 3: In the presence of increasing PTM concentration, cis-splicing is inhibited in favor of trans-splicing.
Figure 4: PTMs are capable of trans-splicing in cultured human cancer cells.
Figure 5: Comparison of cis- and trans-splicing in vivo.
Figure 6: Trans-splicing can repair defective pre-mRNA with expression of functional protein.

Similar content being viewed by others

References

  1. Moore, J.M., Query, C.C. & Sharp, P.A. in The RNA World (eds Gesteland, R.F. & Atkins, J.F.) 303–357 (Cold Spring Harbor Laboratory Press, New York, 1993).

    Google Scholar 

  2. Kramer, A. . The structure and function of proteins involved in mammalian pre-mRNA splicing. Annu. Rev. Biochem. 65, 367– 409 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Staley, J.P. & Guthrie, C. Mechanical devices of the spliceosome: motors, clocks, springs, and things. Cell 92, 315–326 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Murphy, W.J., Watkins, K.P. & Agabian, N. Identification of a novel branch structure as an intermediate in trypanosome mRNA processing: Evidence for trans- splicing. Cell 47, 517–525 ( 1986).

    Article  CAS  PubMed  Google Scholar 

  5. Sutton, R.E. & Boothroyd, J.C. Evidence for trans-splicing in trypanosomes. Cell 47, 527– 535 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Krause, M. & Hirsh, D. A trans-spliced leader sequence on actin mRNA in C. elegans. Cell 49, 753–761 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rajkovic, A., Davis, R. E, Simonsen, J.N. & Rottman, F.M. A spliced leader is present on a subset of mRNAs from the human parasite Schistosoma mansoni. Proc. Nat. Acad. Sci. USA 87, 8879–8883 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Davis, R.E., Hardwick, C., Tavernier, P., Hodgson, S. & Singh, H. RNA trans-splicing in flatworms. J. Biol. Chem. 270, 21813– 21819 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Malek, O., Brennicke, A. & Knoop, V. Evolution of trans-splicing plant mitochondrial introns in pre-Permian times. Proc. Nat. Acad. Sci. USA 94, 553–558 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Van der Ploeg, L.H. Discontinuous transcription and splicing in trypanosomes. Cell 47, 479–480 ( 1986).

    Article  CAS  PubMed  Google Scholar 

  11. Curotto de Lafaille, M.A., Laban, A. & Wirth, D.F. Gene expression in Leishmania: Analysis of essential 5´ DNA sequences. Proc. Nat. Acad. Sci. USA 89, 2703–2707 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shimizu, A., Nussenzweig, M.C., Mizuta, T.R., Leder, P. & Honjo, T. immunoglobulin double-isotype expression by trans-splicing in a human immunoglobulin transgenic mouse. Proc. Nat. Acad. Sci. USA 86, 8020– 8023 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Vellard, M., Sureau, A., Soret, J., Martinerie, C. & Perbal, B. A potential splicing factor is encoded by opposite strand of the trans-spliced c-myb exon. Proc. Nat. Acad. Sci. USA 89, 2511–2515 ( 1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Eul, J., Graessmann, M. & Graessmann, A. Experimental evidence for RNA trans-splicing in mammalian cells. EMBO J. 14, 3226– 3235 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Konarska, M.M., Padgett, R.A. & Sharp, P.A. Trans-splicing of mRNA precursors in vitro . Cell 42, 165–171 (1985).

    Article  CAS  PubMed  Google Scholar 

  16. Solnick, D. Trans-splicing of mRNA precursors. Cell 42, 157–164 (1985).

    Article  CAS  PubMed  Google Scholar 

  17. Pasman, Z. & Garcia-Blanco, M.A. The 5´ and 3´ splice sites come together via a three-dimensional diffusion mechanism. Nucleic Acids Res. 24, 1638–1645 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chiara, M.D. & Reed, R. A two-step mechanism for 5´ and 3´ splice site pairing. Nature 375, 510– 513 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. Bruzik, J.P. & Maniatis, T. Spliced leader RNAs from lower eukaryotes are trans-spliced in mammalian cells. Nature 360, 692–695 ( 1992).

    Article  CAS  PubMed  Google Scholar 

  20. Caudevilla, C. et al. Natural trans-splicing in carnitine octanoyltransferase pre-mRNAs in rat liver. Proc. Natl. Acad. Sci. USA 95, 12185–12190 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sullenger, B.A. & Cech, T.R. Ribozyme-mediated repair of defective mRNA by targeted trans-splicing. Nature 371, 619–622 ( 1994).

    Article  CAS  PubMed  Google Scholar 

  22. Jones, J.T., Lee, S.W. & Sullenger, B.A. Tagging ribozyme reaction sites to follow trans -splicing in mammalian cells. Nat. Med. 2, 643–648 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Phylactou, L.A., Darrah, C. & Wood, M.A.J. Ribozyme-mediated trans-splicing of a trinucleotide repeat. Nat. Genet. 18, 378– 381 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Lan, N., Howrey, R.P., Lee, S.-W., Smith, C.A. & Sullenger, B.A. Ribozyme-mediated repair of sickle β-globin mRNAs in erythrocyte precursors. Science 280, 1593–1596 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Sierakowska, H., Sambade, M.J., Agrawal, S. & Kole, R. Repair of thalassemic human β-globin mRNA in mammalian cells by antisense oligonucleotides. Proc. Natl. Acad. Sci. USA 93, 12840– 12844 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Uchida, T., Pappenheimer, A.M. Jr & Greany, R. Diphtheria toxin and related proteins. I. Isolation and properties of mutant proteins serologically related to diphtheria toxin. J. Biol. Chem. 248, 3838– 3844 (1973).

    CAS  PubMed  Google Scholar 

  27. Talmadge, K., Boorstein, W.R., Vamvakopoulos, N.C., Gething, M.J. & Fiddes, J.C. Only three of the seven human chorionic gonadotropin beta subunit genes can be expressed in the placenta. Nucleic Acids Res. 12, 8415–8436 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Acevedo, H.F., Tong, J.Y. & Hartsock, R.J. Human chorionic gonadotropin beta subunit gene expression in cultured human fetal and cancer cells of different types and origins. Cancer 76, 1467–1475 ( 1995).

    Article  CAS  PubMed  Google Scholar 

  29. Hoon, D.S. et al. Detection of metastatic breast cancer by beta-hCG polymerase chain reaction. Int. J. Cancer 69, 369– 374 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Bellet, D. et al. Malignant transformation of nontrophoblastic cells is associated with the expression of chorionic gonadotropin beta genes normally transcribed in trophoblastic cells. Cancer Res. 57, 516– 523 (1997).

    CAS  PubMed  Google Scholar 

  31. Birken, S. et al. Isolation and characterization of human pituitary chorionic gonadotropin. Endocrinology 137, 1402– 1411 (1996).

    Article  CAS  PubMed  Google Scholar 

  32. Berger, P. et al. Eutopic production of human chorionic gonadotropin beta (hCG beta) and luteinizing hormone beta (hLH beta) in the human testis. FEBS Lett. 343, 229–233 (1994).

    Article  CAS  PubMed  Google Scholar 

  33. Mitchell, L.G. & Merril, C.R. Affinity generation of single-stranded DNA for dideoxy sequencing following the polymerase chain reaction. Anal. Biochem. 178, 239– 242 (1989).

    Article  CAS  PubMed  Google Scholar 

  34. Mitchell, L.G., Vaghmar, R. & Murtagh, J.J. in Advances in Biomagnetic Separation (eds Uhlen, M., Hornes, E. & Olsvik, O.) 31–48 (Eaton Publishing, Natick, MA, 1994).

    Google Scholar 

  35. Senapathy, P., Shapiro, M.B. & Harris, N.L. Splice junctions, branch point sites, and exons: sequence statistics, identification, and applications to genome project. Methods Enzymol. 183, 252–278 (1990).

    Article  CAS  PubMed  Google Scholar 

  36. Sharp, P.A. & Burge, C.B. Classification of introns: U2-type or U12-type. Cell 91, 875– 879 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Aebi, M., Hornig, H., Padgett, R.A., Reiser, J. & Weissmann, C. Sequence requirements for splicing of higher eukaryotic nuclear pre-mRNA. Cell 47, 555–565 (1986).

    Article  CAS  PubMed  Google Scholar 

  38. Reed, R. & Maniatis, T. The role of the mammalian branchpoint sequence in pre-mRNA splicing. Genes Dev. 2, 1268–1276 (1988).

    Article  CAS  PubMed  Google Scholar 

  39. Reed, R. The organization of 3´ splice-site sequences in mammalian introns. Genes Dev. 3, 2113–2123 (1989).

    Article  CAS  PubMed  Google Scholar 

  40. Roscigno, R.F., Weiner, M. & Garcia-Blanco, M.A. A mutational analysis of the polypyrimidine tract of introns. Effects of sequence differences in pyrimidine tracts on splicing. J. Biol. Chem. 268, 11222– 11229 (1993).

    CAS  PubMed  Google Scholar 

  41. Coolidge, C.J., Seely, R.J. & Patton, J.G. Functional analysis of the polypyrimidine tract in pre-mRNA splicing. Nucleic Acids Res. 25, 888–896 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Christopher D.J. Pearce and Bruce M. Cameron Jr. for enabling this project, Virginia G. Johnson (Food and Drug Administration) for providing DT-A clones, and Patrick M. O'Connor (National Cancer Institute) for useful discussions. Personal thanks (L.G.M.) to Carl R. Merril. This work was supported in full by Proteome Sciences plc.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mariano A. Garcia-Blanco or Lloyd G. Mitchell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Puttaraju, M., Jamison, S., Mansfield, S. et al. Spliceosome-mediated RNA trans-splicing as a tool for gene therapy . Nat Biotechnol 17, 246–252 (1999). https://doi.org/10.1038/6986

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/6986

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing