Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Peptide mimics of a tumor antigen induce functional cytotoxic T cells

Abstract

The ability to mimic peptide/peptide and/or peptide/carbohydrate structures may be important in generating cross-reactive antibodies for autoimmune and other diseases. We show that the peptide sequence DAHWESWL can mimic the conformation of the unrelated MUC1 peptide SAPDTRPAP(G). Mice immunized with mannan-MUC1-peptides make cytotoxic T lymphocytes (CTLs) and are protected from MUC1+ tumors. We show that the same specific anti-MUCI responses can be produced by immunizing with the DAHWESWL peptide; furthermore, specific tumor protection is obtained in a manner similar to that with MUC1 immunization. The DAHWESWL peptide immunization leads to CTLs that recognize H2Dd and H2Ld but not H2b or human leukocyte antigens–group A (HLA-A)*0201 presented MUC1 peptides. However, mutation of the DAHWESWL peptide to a more HLA-A*0201–compatible structure with appropriate anchors (DLHWASWV), leads to the production of CTLs in HLA-A*0201 mice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Singer, A. 1994. News: time and truth for cancer vaccines—a new generation. J. Natl. Cancer Inst. 86: 330–330.

    Article  Google Scholar 

  2. Burchell, J., Papadimitriou, J.T., Boshell, M., Gendler, S.J. and Duhig, T. 1989. A short sequence within the amino acid tandem repeat of a cancer-associated mucin, contains immunodominant epitopes. Int. J. Cancer 44: 691–696.

    Article  CAS  Google Scholar 

  3. Xing, P.X., Prenzoska, J., Quelch, K. and McKenzie, I.F.C. 1992. Second generation anti-MUCI peptide monoclonal antibodies. Cancer Res. 52: 2310–2317.

    CAS  PubMed  Google Scholar 

  4. Burchell, J., Gendler, S., Taylor-Papadimitriou, J., Girling, A., Lewis, A., Millis, R., and Lamport, D. 1987. Development and characterisation of breast cancer reactive monoclonal antibodies directed to the core protein of the human milk mucin. Cancer Res. 47: 5476–5482.

    CAS  Google Scholar 

  5. Apostolopoulos, V., McKenzie, I.F.C., and Pietersz, G.A. 1996. Breast cancer immunotherapy—current status and future prospects. Immunol. Cell Biol. 74: 457–464.

    Article  CAS  Google Scholar 

  6. Barnd, D.L., Lan, M.S., Metzgar, R.S., and Finn, O.J. 1989. MHC-unre-stricted recognition of tumor-associated mucins by human CTL. Proc. Natl. Acad. Sci. USA 86: 7159–7163.

    Article  CAS  Google Scholar 

  7. Ioannides, C.G., Fisk, B., Jerome, K.R., Irimura, T., Wharton, J.T., and Finn, O.J. 1989. CTL from ovarian malignant tumors can recognize polymorphic epithelial mucin core peptides. J. Immunol. 151: 3693–3703.

    Google Scholar 

  8. Jerome, K.R., Domenech, N., and Finn, O.J. 1993. Tumor-specific CTL clones from patients with breast and pancreatic adenocarcinoma recognize EBV-immortalized B cells transfected with polymorphic epithelial mucin cDNA. J. Immunol. 151: 1654–1662.

    CAS  PubMed  Google Scholar 

  9. Apostolopoulos, V., Pietersz, G.A., and McKenzie, I.F.C. 1996. Cell-mediated immune responses to MUC1 fusion protein coupled to mannan. Vaccine 14: 930–938.

    Article  CAS  Google Scholar 

  10. Apostolopoulos, V., Pietersz, G.A., Loveland, B.E., Sandrin, M.S. and McKenzie, I.F.C. 1995. Oxidative/reductive conjugation of mannan to antigen selects for T, or T, immune responses. Proc. Natl. Acad. Sci. USA 92: 10128–10132.

    Article  CAS  Google Scholar 

  11. Karanikas, V., Hwang, L., Pearson, J., Ong, C.S., Apostolopoulos, V., Vaughan, H.A., et al. 1997. Antibody and T cell responses of patients with adenocarcinoma immunized with mannan-MUC1 fusion protein. J. Clin. Invest. 100: 2783–2792.

    Article  CAS  Google Scholar 

  12. Vaughan, H.A., Oldenburg, K.R., Gallop, M.A., Atkin, J.D., McKenzie, I.F.C., et al. 1996. Recognition of an octapeptide sequence by multiple Galα(1,3)Gal-binding proteins. Xenotransplantation 3: 18–23.

    Article  Google Scholar 

  13. Sandrin, M.S., Vaughan, H.A., Xing, P.X., and McKenzie, I.F.C. 1997. Natural human anti-Galα(1,3)Gal antibodies react with human mucin peptides. Glycoconj. J. 14: 97–105.

    Article  CAS  Google Scholar 

  14. Apostolopoulos, V., Haurum, J.S., and McKenzie, I.F.C. 1997. MUC1 peptide epitopes associated with 5 different H2 Class I molecules. Eur. J. Immunol. 27: 2579–2587.

    Article  CAS  Google Scholar 

  15. Quaratino, S., Thorpe, C.J., Travers, P.J. and Londei, M. 1995. Similar antigenic surfaces, rather than sequence homology, dictate T-cell epitope molecular mimicry. Proc. Natl. Acad. Sci. USA 92: 10398–10402.

    Article  CAS  Google Scholar 

  16. Apostolopoulos, V., Karanikas, V., Haurum, J., and McKenzie, I.F.C. 1997. Induction of HLA-A*0201 restricted cytotoxic T lymphocytes to the MUC1 human breast cancer antigen. J. Immunol. 159: 5211–5218.

    CAS  PubMed  Google Scholar 

  17. Westerink, M.A.J., Giardinal, P.C., Apicella, M.A. and Emmons, T.K. 1995. Peptide mimicry of the meningococcal group C capsular polysaccharide. Proc. Natl. Acad. Sci. USA 92: 4021–025.

    Article  CAS  Google Scholar 

  18. Wucherpfennig, K.W. and Strominger, J.L. 1995. Molecular mimicry in T cell mediated autoimmunity: viral peptides activate human T cell clones specific for myelin basic protein. Cell 80: 695–705.

    Article  CAS  Google Scholar 

  19. Weiss, G.A., Valentekovich, R.J., Collins, E.J., Garboczi, D.N., Lane, W.S., Schreiber, S.L. et al. 1996. Covalent HLA-B27/peptide complex induced by specific recognition of an aziridine mimic of arginine. Proc. Natl. Acad. Sci. USA 93: 10945–10948.

    Article  CAS  Google Scholar 

  20. Loftus, D.J., Castelli, C., Clay, T.M., Squarcina, P., Marincola, P.M., Nishimura, M.I. et al. 1996. Identification of epitope mimics recognized by CTL reactive to the melanoma/melanocyte-derived peptide MART-1 B7Ja. J. Exp. Med. 184: 647–657.

    Article  CAS  Google Scholar 

  21. Blake, J., Johnston, J.V., Hellstrom, K.E., Marquardt, H. and Chen, L. 1996. Use of combinatorial peptide libraries to construct functional mimics of tumor epitopes recognized by MHC Class l-restricted cytolytic T lymphocytes. J. Exp. Med. 184: 121–30.

    Article  CAS  Google Scholar 

  22. Apostolopoulos, V., Xing, P.X., Trapani, J.A. and McKenzie, I.F.C. 1993. Production of anti-breast cancer monoclonal antibodies using a glutathione-S-transferase-MUC1 bacterial fusion protein. Br. J. Cancer 67: 713–720.

    Article  CAS  Google Scholar 

  23. Xing, P.X., Tjandra, J.J., Stacker, S.A., Teh, J.G., Thompson, C.H., McLaughlin, P.J. and McKenzie, I.F.C. 1989. Monoclonal antibodies reactive with mucin expressed in breast cancer. Immunol. Cell Biol. 67: 183–185.

    Article  Google Scholar 

  24. Vitiello, A., Marchesini, D., Furze, J., Sherman, L.A. and Chestnut, R.W. 1991. Analysis of the HLA-restricted influenza-specific CTL response in transgenic mice carrying a chimeric human-mouse Class I MHC molecule. J. Exp. Med. 173:1007.

  25. Apostolopoulos, V., Xing, P.X. and McKenzie, I.F.C. 1994. Murine immune response to cells transfected with human MUC1: immunization with cellular and synthetic antigens. Cancer Res. 54: 5186–5193.

    CAS  Google Scholar 

  26. Young, A.C.M., Zhang, W., Sacchettini, J.C. and Nathenson, S.G. 1994. The three-dimensional structure of H2Db at 2. 4Å resolution: implications for antigen-determinant selection. Cell 76: 39–50.

    Article  CAS  Google Scholar 

  27. Chelvanayagam, G., Jakobsen, I.B., Gao, X. and Easteal, S. 1996. Structural comparison of major histocompatibility complex Class I molecules and homology modelling of five distinct human leucocyte antigen-A alleles. Protein Eng. 9: 1151–1164.

    Article  CAS  Google Scholar 

  28. Fremont, D.H., Matsumura, M., Stura, E.A., Peterson, P.A. and Wilson, I.A. 1992. Crystal structure of two viral peptides in complex with MHC Class IH2Kb. Science 257: 919–926.

    Article  CAS  Google Scholar 

  29. Madden, D.R., Gorga, J.C., Strominger, J.L. and Wiley, D.C. 1992. The three-dimensional structure of HLA-B27 at 2.1Å resolution suggests a general mechanism for tight peptide binding to MHC. Cell 70: 1035–1048

    Article  CAS  Google Scholar 

  30. Madden, D.R., Garboczi, D.N. and Wiely, D.C. 1993. The antigenic identity of peptide-MHC complexes: a comparison of the conformations of five viral peptides presented by HLA-A*0201. Cell 75: 693–708.

    Article  CAS  Google Scholar 

  31. Smith, K.J., Reid, S.W., Stuart, D.I., McMichael, A.J., Jones, E.Y. and Bell, J.I. 1996. An altered position of the alpha 2 helix of MHC Class I is revealed by the crystal structure of HLA-B*3501. Immunity 4: 202–214.

    Google Scholar 

  32. Fremont, D.H., Stura, E.A., Matsumura, M., Peterson, P.A. and Wilson, I.A. 1995. Crystal structure of an H2Kb-ovalbumin peptide complex reveals the interplay of primary and secondary anchor positions in the major histocompatibility complex binding groove. Proc. Natl. Acad. Sci. USA 92: 2479–2483.

    Article  CAS  Google Scholar 

  33. Smith, K.J., Reid, S.W., Harlos, K., McMichael, A.J., Stuart, D.I., Bell, J.I. et al. 1996. Bound water structure and polymorphic amino acids act together to allow the binding of different peptides to MHC Class I HLA-B53. Immunity 4: 215–228.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to lan F.C. McKenzie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Apostolopoulos, V., Lofthouse, S., Popovski, V. et al. Peptide mimics of a tumor antigen induce functional cytotoxic T cells. Nat Biotechnol 16, 276–280 (1998). https://doi.org/10.1038/nbt0398-276

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0398-276

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing