Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Metal mediated sterol receptor-DNA complex association and dissociation determined by electrospray ionization mass spectrometry

Abstract

The vitamin D receptor (VDR) binds to specific DNA sequences termed vitamin D response elements (VDREs) thereby enhancing or repressing transcription. We have used electrospray ionization mass spectrometry to examine the interaction between the DMA-binding domain of the vitamin D receptor (VDR DBD) with a double-stranded DNA (dsDNA) sequence containing the VDRE from the mouse osteopontin gene. The VDR DBD was shown to bind to the appropriate DNA sequence only when bound to 2 moles of zinc (Zn2+) or cadmium (Cd2+) per mole of protein. Additional binding of Zn2+ or Cd2+ by the protein caused the protein to dissociate from the dsDNA. These results show that the VDR DBD/DNA metal-dependent association occurs when the receptor is occupied by 2 moles of Zn2+ per mole of protein and that further binding of Zn2+ to the protein causes dissociation of the complex.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Darwish, H. and DeLuca, H.F. 1993. Vitamin D-regulated gene expression. Crit. Rev. Eukaryot. Gene Expr. 3:89–116.

    CAS  PubMed  Google Scholar 

  2. Perret, C., Colnot, S., Romagnolo, B. and Thomasset, M. 1997. Control of nuclear transcription of vitamin D-dependent genes by vitamin D. Curr. Opin. Nephrol, Hypertens. 6:314–320.

    Article  CAS  Google Scholar 

  3. Horseman, N.D., Engle, S.J. and Ralescu, A. 1997. The logic of signaling from the cell surface to the nucleus. Trends Endocrine Metabolism 8:123–129.

    Article  CAS  Google Scholar 

  4. Beato, M. and Sanchez-Pacheco, A. 1996. Interaction of steroid hormone receptors with the transcription initiation complex. Endocr. Rev. 17:587–609.

    Article  CAS  Google Scholar 

  5. Zilliacus, J., Wright, A.P., Carlstedt-Duke, J. and Gustafsson, J.A. 1995. Structural determinants of DNA-binding specificity by steroid receptors. Mol. Endocrinol. 9:389–400.

    CAS  PubMed  Google Scholar 

  6. Freedman, L.P. and Luisi, B.F. 1993. on the mechanism of DNA binding by nuclear hormone receptors: a structural and functional perspective. J. Cell. Biochem. 51:140–150.

    Article  CAS  Google Scholar 

  7. Ribeiro, R.C., Kushner, P.J. and Baxter, J.D. 1995. The nuclear hormone receptor gene superfamily. Annu. Rev. Med. 46:443–453.

    Article  CAS  Google Scholar 

  8. Freedman, L.P., Luisi, B.F., Korszun, Z.R., Basavappa, R., Sigler, P.B. and Yamamoto, K.R. 1988. The function and structure of the metal coordination sites within the glucocorticoid receptor DNA binding domain. Nature 334:543–546.

    Article  CAS  Google Scholar 

  9. Carlberg, C. 1995. Mechanisms of nuclear signaling by vitamin D3. Interplay with retinoid and thyroid hormone signaling. Eur. J. Biochem. 231:517–527.

    Article  CAS  Google Scholar 

  10. Pike, J.W. 1991. Vitamin D3 receptors: structure and function in transcription Annu. Rev. Nutr. 11:189–216.

    Article  CAS  Google Scholar 

  11. Freedman, L.P. and Towers, T.L. 1991. DNA binding properties of the vitamin D, receptor zinc finger region. Mol. Endocrinol. 5:1815–1826.

    Article  CAS  Google Scholar 

  12. Carlberg, C., Bendik, I., Wyss, A., Meier, E., Sturzenbecker, L.J., Grippo, J.F. and Hunziker, W. 1993. Two nuclear signaling pathways for vitamin D. Nature 361:657–660.

    Article  CAS  Google Scholar 

  13. Mangelsdorf, D.J., Thummel, C., Beato, M., Herrlich, P., Schutz, G., Umesono, K. et al. 1995. The nuclear receptor superfamily: the second decade. Cell 83:835–839.

    Article  CAS  Google Scholar 

  14. Craig, T.A., Veenstra, T.D., Naylor, S., Tomlinson, A.J., Johnson, K.L., Macura, S. et al. 1997. Zinc binding properties of the DNA binding domain of the 1,25-dihy-droxy vitamin D3 receptor. Biochemistry 36:10482–10491.

    Article  CAS  Google Scholar 

  15. Veenstra, T.D., Johnson, K.L., Tomlinson, A.J., Craig, T.A., Kumar, R. and Naylor, S. 1998. Zinc-induced conformational changes in the DNA-binding domain of the vitamin D receptor determined by electrospray ionization mass spectrometry. Journal of the American Society of Mass Spectrometry 9:8–14.

    Article  CAS  Google Scholar 

  16. Fenn, J.B., Mann, M., Meng, C.K., Wong, S.F. and Whitehouse, C.M. 1990. Electrospray ionization for mass spectrometry of large biomolecules. Science 246:64–71.

    Article  Google Scholar 

  17. Smith, R.D., Bruce, J.E., Wu, Q.Y. and Lei, Q.P. 1997. New mass spectrometric methods for the study of noncovalent associations of biopolymers. Chemical Society Reviews 26:191–202.

    Article  CAS  Google Scholar 

  18. Wu, Q.Y., Gao, J.M., McCarthy, J.D., Sigal, G.B., Bruce, J.E., Whitesides, G.M. and Smith, R.D. 1997. Carbonic anhydrase-inhibitor binding- from solution to the gas phase. Journal of the American Chemical Society 119:1157–1158.

    Article  CAS  Google Scholar 

  19. Cheng, X., Harms, A.C., Goudreau, P.N., Terwilliger, T.C. and Smith, R.D. 1996. Direct measurement of oligonucleotide binding stoichiometry of gene V protein by mass spectrometry. Proc. Natl. Acad. Sci. USA 93:7022–7027.

    Article  CAS  Google Scholar 

  20. Loo, J.A. 1997. Studying noncovalent protein complexes by electrospray ionization mass spectrometry. Mass SpectrometryReview 16:1–23.

    Article  CAS  Google Scholar 

  21. Nemirovskiy, O.V., Ramanathan, R. and Gross, M.L. 1997. Investigation of calcium-induced, noncovalent association of calmodulin with mellitin by electrospray ionization mass spectrometry. Journal of the American Society of Mass Spectrometry 8:809–812.

    Article  CAS  Google Scholar 

  22. Loo, J.A., Hu, P.F., McConnell, P., Mueller, W.T., Sawyer, T.K. and Thanabal, V. 1997. A study of SRC SH2 domain protein-phosphopeptide binding interactions by electrospray ionization mass spectrometry. Journal of the American Society of Mass Spectrometry 8:234–243.

    Article  CAS  Google Scholar 

  23. Potier, N., Barth, P., Tritsch, D., Biellmann, J.F. and Vandorsselaer, A. 1997. Study of non-covalent enzyme-inhibitor complexes of aldose reductase by electrospray mass spectrometry. Eur. J. Biochem. 243:274–282.

    Article  CAS  Google Scholar 

  24. Haas, T.A. and Plow, E.F. 1996. The cytoplasmic domain of αllb β. A ternary complex of the integrin α and β subunits and a divalent cation. J. Biol. Chem. 271:6017–6026.

    Article  CAS  Google Scholar 

  25. Veenstra, T.D., Johnson, K.L., Tomlinson, A.J., Naylor, S. and Kumar, R. 1997. Determination of calcium-binding sites in rat brain calbindin D28K by electrospray ionization mass spectrometry. Biochemistry 36:3535–3542.

    Article  CAS  Google Scholar 

  26. Goodlett, D.R., Camp, D.G., Hardin, C.C., Corregan, M. and Smith, R.D. 1993. Direct observation of a DNA quadruplex by electrospray ionization mass spectrometry. Biological Mass Spectrometry 22:181–183.

    Article  CAS  Google Scholar 

  27. Cheng, X., Morin, R.E., Harms, A.C., Bruce, J.E., Ben-David, Y. and Smith, R.D. 1996. Mass spectrometric characterization of sequence-specific complexes of DNA and transcription factor PU.1 DNA binding domain. Anal. Biochem. 239:35–40.

    Article  CAS  Google Scholar 

  28. Sarkar, B. 1995. Metal replacement in DNA-binding zinc finger proteins and its relevance to mutagenicity and carcinogenicity through free radical generation. Nutrition 11:646–649.

    CAS  PubMed  Google Scholar 

  29. Hanas, J.S. and Gunn, C.G. 1996. Inhibition of transcription factor IIIA-DNA interactions by xenobiotic metal ions. Nucl. Acids Res. 24:924–930.

    Article  CAS  Google Scholar 

  30. Thiesen, H.J. and Bach, C. 1991. Transition metals modulate DNA-protein interactions of SP1 zinc finger domains with its cognate target site. Biochem. Biophys. Res. Commun. 176:551–557.

    Article  CAS  Google Scholar 

  31. Berg, J.M. and Shi, Y. 1996. The galvanization of biology: a growing appreciation for the roles of zinc. Science 271:1081–1085.

    Article  CAS  Google Scholar 

  32. Fleet, J.C., Turnbull, A.J., Bourcier, M. and Wood, R.J. 1993. D-sensitive and quinacrine-sensitive zinc transport in human intestinal cell line Caco-2. Am. J. Physiol. 264:G1037–G1045.

    Article  CAS  Google Scholar 

  33. Reyes, J.G. 1996. Zinc transport in mammalian cells. Am. J. Physiol. 270:C401–C410.

    Article  CAS  Google Scholar 

  34. Antoniou, L.D., Shalhoub, R.J. and Elliot, S. 1981. Zinc tolerance tests in chronic uremia. Clin. Nephrol. 16:181–187.

    CAS  PubMed  Google Scholar 

  35. Kowarski, S., Blair-Stanek, C.S. and Schachter, D. 1974. Active transport of zinc and identification of zinc-binding protein in rat jejunal mucosa. Am. J. Physiol. 226:401–407.

    CAS  PubMed  Google Scholar 

  36. Johnson, K.L., Veenstra, T.D., Tomlinson, A.J., Kumar, R. and Naylor, S. 1997. Determination of non-covalent metal ion/protein interactions using a microflow electrospray ionization mass spectrometry interface. Rapid Commun. Mass Spectrom. 11:939–942.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rajiv Kumar or Stephen Naylor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Veenstra, T., Benson, L., Craig, T. et al. Metal mediated sterol receptor-DNA complex association and dissociation determined by electrospray ionization mass spectrometry. Nat Biotechnol 16, 262–266 (1998). https://doi.org/10.1038/nbt0398-262

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0398-262

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing