Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Reversible permeabilization of plasma membranes with an engineered switchable pore

Abstract

By using an engineered, self-assembling, proteinaceous, 2-nm pore equipped with a metal-actuated switch, a technique to reversibly permeabilize the plasma membrane to small molecules (1000 Da) has been developed. We have demonstrated the dose-dependent permeabilization of fibroblasts by pores designed to be blocked and unblocked by the addition and removal of μM concentrations of Zn2+. Further, we have shown that the activity of the switch allows permeabilized cells to maintain viability and ultrastructural integrity following the unconstrained flux of small molecules. This ability to control the transmembrane influx and efflux of molecules and thereby vary the intracellular environment yet maintain cell viability will impact an array of biological and medical problems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bhakdi, S., Weller, U., Walev, U., Martin, E., Jonas, D., and Palmer, M. 1993. A guide to use of pore-forming toxins for controlled permeabilization of cell membranes. Med. Microb. Immunol. 182: 167–175.

    Article  CAS  Google Scholar 

  2. Wilmsen, H.U., Pattus, R., and Buckley, J.T., 1990. lysin, a hemolysin from Aeromonas hydrophilia, forms voltage-gated channels in planar lipid bilayers. J. Membrane Biol. 115: 71–82.

    Article  CAS  Google Scholar 

  3. Menestrina, G., 1986. Ionic channels formed by Staphylococcus aureus alpha-toxin: voltage-dependent inhibition by divalent and trivalent cations. J. Membrane Biol. 90: 177–190.

    Article  CAS  Google Scholar 

  4. Tsong, Y.T. 1991. Electroporation of cell membranes. Biophys. J. 60: 297–306.

    Article  CAS  Google Scholar 

  5. Morris, A.P. and Frizzell, R.A. 1993. Calcium-dependent chloride channels in undifferentiated human colonic cells HT-29 II. Am. J. Physiol. 264: C977–C985.

    Article  CAS  Google Scholar 

  6. Kubisch, H.M., Hernandez-Ledezma, J.J., Larson, M.A., and Sikes, J.D. 1995. Expression of two transgenes in in vitro matured and fertilized bovine zygotes after DMA microinjection. J. Reprod. and Fertil. 104: 133–139.

    Article  CAS  Google Scholar 

  7. Walker, B., Kasianowicz, J., Krishnasastry, M., and Bayley, H. 1994. A pore-forming protein with a metal-actuated switch. Protein Eng. 7: 655–662.

    Article  CAS  Google Scholar 

  8. Bhakdi, S. and Tranum-Jensen, J. 1991. Alpha-toxin of Staphylococcus aureus. Microbiol. Rev. 55: 733–751.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Hildebrand, A., Pohl, M., and Bhakdi, S. 1991. Staphylococcus aureus α-toxin: dual mechanism of binding to target cells. J. Biol. Chem. 266: 17195–17200.

    CAS  PubMed  Google Scholar 

  10. Bayley, H. 1995. Pore-forming proteins with built-in triggers and switches. Bioorg. Chem. 23: 340–345.

    Article  CAS  Google Scholar 

  11. Walker, B., Braha, O., Cheley, S., and Bayley, H. 1995. An intermediate in the assembly of a pore-forming protein trapped with a genetically engineered switch. Chem. Biol. 2: 99–105.

    Article  CAS  Google Scholar 

  12. Bashford, C.L., Alder, G.M., Fulford, L.G., Korchev, Y.E., Kovacs, E. et al. 1996. Pore formation by S.aureus alpha-toxin in liposomes and planar lipid bilayers: effects of non-electrolytes. J. Membr. Biol. 150: 37–45.

    Article  CAS  Google Scholar 

  13. Sunzel, B., Holm, S., Reuterving, C., Söderberg, T., et al. 1995. The effect of zinc on bacterial phagocytosis, killing, and cytoprotection in human polymorphonuclear leucocytes. APMIS 103: 633–644.

    Article  Google Scholar 

  14. Walker, B., Krishnasastry, J., Zorn, L., and Bayley, H. 1992. Assembly of the oligomeric membrane pore formed by staphylococcal α-hemolys in examined by truncation mutagenesis. J. Biol. Chem. 267: 21782–21786.

    CAS  PubMed  Google Scholar 

  15. Palmer, M., Weller, U., MeBner, M., and Bhakdi, S. 1993. Altered pore-forming properties of proteolytically nicked staphylococcal α-toxin. J. Biol. Chem. 268: 11963–11967.

    CAS  PubMed  Google Scholar 

  16. Gouaux, J.E., Braha, O., Hobaugh, M., Song, L., Cheley, S., Shustak, C. et al. 1994. Subunit stoichiometry of staphylococcal α-hemolysin in crystals and on membranes: a heptameric transmembrane pore. Proc. Natl. Acad. Sci. USA 91: 12828–12831.

    Article  CAS  Google Scholar 

  17. Panchal, R. and Bayley, H. 1995. Interactions between residues in staphylococcal α-hemolysin revealed by reversion mutagenesis. J. Biol. Chem. 270: 23072–23076.

    Article  CAS  Google Scholar 

  18. Johnson, H.L. and Sauberlich, H.E. Trace element analysis in biological systems. pp. 405–426 in Current topics in nutrition and disease, volume 6. A.S. Prasad (ed.). Alan R. Liss, Inc., New York.

  19. Levin, R.L. and Miller, T.M. 1981. An optimum method for the introduction or removal of permeable cryoprotectants: isolated cells. Cryobiology 18: 32–48.

    Article  CAS  Google Scholar 

  20. Walev, I., Palmer, M., Martin, E., Jonas, D., Weller, U., and Bhakdi, S. 1994. Recovery of human fibroblasts from attack by the pore-forming α-toxin of Staphylococcus aureus. Microb. Path. 17: 187–201.

    Article  CAS  Google Scholar 

  21. Panchal, R.G., Cusack, E., Cheley, S., and Bayley, H. 1995. Tumor pro-tease-activated, pore-forming toxins from a combinatorial library. Nature Biotechnology 14: 852–856.

    Article  Google Scholar 

  22. Walkr, B. and Bayley, H. 1994. A pore-forming protein with a protease-activated trigger. Protein Eng. 7: 91–97.

    Article  Google Scholar 

  23. Chang, C., Niblack, B., Walker, B., and Bayley, H. 1995. A photogenerated pore-forming protein. Chem. Biol. 2: 391–400.

    Article  CAS  Google Scholar 

  24. Bischof, J.C., Padanilam, J., Holmes, W.H., Ezzell, R.M., Lee, R.C., et al 1995. Dynamics of cell membrane permeability changes at supraphysiological temperatures. Biophys. J. 68: 2608–2614.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Russo, M., Bayley, H. & Toner, M. Reversible permeabilization of plasma membranes with an engineered switchable pore. Nat Biotechnol 15, 278–282 (1997). https://doi.org/10.1038/nbt0397-278

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0397-278

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing