Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Metal-recognition by repeating polypeptides

Abstract

Attachment of proteins to metal surfaces has the potential to improve our understanding of protein adhesion and has applications in sensor technology. Repeating polypeptides able to bind to metallic gold or chromium were selected from a population of approximately 5 million different polypeptides. Each polypeptide contained several direct repeats of identical peptide units 14 or 28 amino acids long. The metal-recognizing polypeptides were found to retain their binding properties when freed from the protein used to select them. One gold-binding polypeptide's avidity for gold was found to be dependent on the number of repeats and the presence of salt.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Wells, J.A. 1996. Hormone mimicry. Science. 273: 449–450.

    Article  CAS  PubMed  Google Scholar 

  2. McConnell, S.J. and Hoess, R.H. 1995. Tendamistat as a scaffold for conformationally constrained phage peptide libraries. J. Mol. Biol. 250: 460–470.

    Article  CAS  PubMed  Google Scholar 

  3. Lucas, F., Shaw, J.T.B., and Smith, S.G. 1957. The amino acid sequence in a fraction of the fibroin of Bombyx mori. Biochem. J. 66: 468–479.

    Article  CAS  PubMed Central  Google Scholar 

  4. Bouges-Bocquet, B., Villarroya, H., and Hofnung, M. 1984. Linker mutagenesis in the gene of an outer membrane protein of Escherichia coli, LamB. J. Cell. Biochem. 24: 217–228.

    Article  CAS  PubMed  Google Scholar 

  5. Brown, S. 1992. Engineered iron oxide adhesion mutants of the λ-receptor, Proc. Natl. Acad. Sci. 89: 8651–8655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Watterson, J.R. 1994. Artifacts resembling budding bacteria produced in placer-gold amalgams by nitric acid leaching. Geology 22: 1144–1146.

    Article  CAS  Google Scholar 

  7. Coughlin, R.T., Tonsager, S., and McGroarty, E.J. 1983. Quantitation of metal cations bound to membranes and extracted lipopolysaccharide of Escherichia coli. Biochemistry. 22: 2002–2007.

    Article  CAS  PubMed  Google Scholar 

  8. Renter, P., Eberhardt, A., and Eisenberger, P. 1994. Self-assembly of n-alkyl thiols as disulfides on Au(111). Science 266: 1216–1218.

    Article  Google Scholar 

  9. Kim, E.E. and Wykoff, H.W. 1991. Reaction mechanism of alkaline phosphatase based on crystal structures. J. Mol. Biol. 218: 449–464.

    Article  CAS  PubMed  Google Scholar 

  10. Creighton, T.E. 1993. Proteins, structures and molecular properties. W.H. Freeman and Co., New York.

    Google Scholar 

  11. Lee, H.-J. and Wilson, I.B. 1971. Enzymic parameters: measurement of V and Km. Biochim. Biophys. Acta 242: 519–522.

    Article  CAS  PubMed  Google Scholar 

  12. Lockshon, D. and Morris, D.R. 1985. Sites of reaction of Escherichia coli DNA gyrase on pBR322 in vivo as revealed by oxolinic acid-induced plasmid linearization. J. Mol. Biol. 181: 63–74.

    Article  CAS  PubMed  Google Scholar 

  13. Handley, D.A. and Chien, S. 1983. Colloidal gold: a pluripotent receptor probe. Proc. Soc. Exp. Biol. Med. 174: 1–11.

    Article  CAS  PubMed  Google Scholar 

  14. Geddes, N.J., Martin, A.S., Caruso, F., Urquhart, R.S., Furlong, D.N., Sambles, J.R., Than, K.A., and Edgar, J.A. 1994. Immobilization of IgG onto gold surfaces and its interaction with anti-IgG studied by surface plasmon resonance. J. Immunological Methods. 175: 149–160.

    Article  CAS  Google Scholar 

  15. Krejchi, M.T., Atkins, E.D.T., Waddon, A.J., Fournier, M.J., Mason, T.L., and Tirrell, D.A. 1994. Chemical sequence control of β-sheet assembly in macromolecular crystals of periodic polypeptides. Science 265: 1427–1432.

    Article  CAS  PubMed  Google Scholar 

  16. Sigal, G.B., Bamdad, C., Barberis, A., Strominger, J., and Whitesides, G.M. 1996. A self-assembled monolayer for the binding and study of histidine-tagged proteins by surface plasmon resonance. Anal. Chem. 68: 490–497.

    Article  CAS  PubMed  Google Scholar 

  17. Brown, S. 1987. Mutations in the gene for EF-G reduce the requirement for 4.5S RNA in the growth of E. coli. Cell 49: 825–833.

    Article  CAS  PubMed  Google Scholar 

  18. Boulain, J.C., Charbit, A., and Hofnung, M. 1986. Mutagenesis by random linker insertion into the lamB gene of Escherichia coli K12. Mol. Gen. Genet. 205: 339–348.

    Article  CAS  PubMed  Google Scholar 

  19. Chang, A.C.Y. and Cohen, S.N. 1978. Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J. Bacteriol. 134: 1141–1156.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Vieira, J. and Messing, J. 1992. The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19: 259–268.

    Article  Google Scholar 

  21. Gillet, D., Ducancel, F., Pradel, E., Léonetti, M., Ménez, A., and Boulain, J.-C. 1992. Insertion of a dilulfide-containing neurotoxin into E coli alkaline phosphatase: the hybrid retains both biological activities. Prot. Eng. 5: 273–278.

    Article  CAS  Google Scholar 

  22. Fire, A. and Xu, S.-Q. 1995. Rolling replication of short DNA circles. Proc. Natl. Acad. Sci. 92: 4641–4645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nakai, H. and Richardson, C.C. 1988. The effect of the T7 and Escherichia coli DNA-binding proteins at the replication fork of bacteriophage T7. J. Biol. Chem. 263: 9831–9839.

    CAS  PubMed  Google Scholar 

  24. Inoue, H., Nojima, H., and Okayama, H. 1990. High efficiency transformation of Escherichia coli with plasmids. Gene 96: 23–28.

    Article  CAS  PubMed  Google Scholar 

  25. Pääbo, S., Irwin, D.M., and Wilson, A.C. 1990. DNA damage promotes jumping between templates during enzymatic amplification. J. Biol. Chem. 265: 4718–4721.

    PubMed  Google Scholar 

  26. Miller, J.H. 1972. Experiments in molecular genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

    Google Scholar 

  27. Ducancel, F., Boulain, J.-C., Trémeau, O., and Ménez, A. 1989. Direct expression in E coli of a functionally active protein A-snake toxin fusion protein. Prot Eng. 3: 139–143.

    Article  CAS  Google Scholar 

  28. Laemmli, U.K. Cleavage of structure proteins during assembly of the head of bacteriophage T4. Nature 227: 680–685.

  29. Schägger, H. and von Jagow, G. 1987. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 166: 368–379.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, S. Metal-recognition by repeating polypeptides. Nat Biotechnol 15, 269–272 (1997). https://doi.org/10.1038/nbt0397-269

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0397-269

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing