Metal-recognition by repeating polypeptides


Attachment of proteins to metal surfaces has the potential to improve our understanding of protein adhesion and has applications in sensor technology. Repeating polypeptides able to bind to metallic gold or chromium were selected from a population of approximately 5 million different polypeptides. Each polypeptide contained several direct repeats of identical peptide units 14 or 28 amino acids long. The metal-recognizing polypeptides were found to retain their binding properties when freed from the protein used to select them. One gold-binding polypeptide's avidity for gold was found to be dependent on the number of repeats and the presence of salt.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Wells, J.A. 1996. Hormone mimicry. Science. 273: 449–450.

  2. 2

    McConnell, S.J. and Hoess, R.H. 1995. Tendamistat as a scaffold for conformationally constrained phage peptide libraries. J. Mol. Biol. 250: 460–470.

  3. 3

    Lucas, F., Shaw, J.T.B., and Smith, S.G. 1957. The amino acid sequence in a fraction of the fibroin of Bombyx mori. Biochem. J. 66: 468–479.

  4. 4

    Bouges-Bocquet, B., Villarroya, H., and Hofnung, M. 1984. Linker mutagenesis in the gene of an outer membrane protein of Escherichia coli, LamB. J. Cell. Biochem. 24: 217–228.

  5. 5

    Brown, S. 1992. Engineered iron oxide adhesion mutants of the λ-receptor, Proc. Natl. Acad. Sci. 89: 8651–8655.

  6. 6

    Watterson, J.R. 1994. Artifacts resembling budding bacteria produced in placer-gold amalgams by nitric acid leaching. Geology 22: 1144–1146.

  7. 7

    Coughlin, R.T., Tonsager, S., and McGroarty, E.J. 1983. Quantitation of metal cations bound to membranes and extracted lipopolysaccharide of Escherichia coli. Biochemistry. 22: 2002–2007.

  8. 8

    Renter, P., Eberhardt, A., and Eisenberger, P. 1994. Self-assembly of n-alkyl thiols as disulfides on Au(111). Science 266: 1216–1218.

  9. 9

    Kim, E.E. and Wykoff, H.W. 1991. Reaction mechanism of alkaline phosphatase based on crystal structures. J. Mol. Biol. 218: 449–464.

  10. 10

    Creighton, T.E. 1993. Proteins, structures and molecular properties. W.H. Freeman and Co., New York.

  11. 11

    Lee, H.-J. and Wilson, I.B. 1971. Enzymic parameters: measurement of V and Km. Biochim. Biophys. Acta 242: 519–522.

  12. 12

    Lockshon, D. and Morris, D.R. 1985. Sites of reaction of Escherichia coli DNA gyrase on pBR322 in vivo as revealed by oxolinic acid-induced plasmid linearization. J. Mol. Biol. 181: 63–74.

  13. 13

    Handley, D.A. and Chien, S. 1983. Colloidal gold: a pluripotent receptor probe. Proc. Soc. Exp. Biol. Med. 174: 1–11.

  14. 14

    Geddes, N.J., Martin, A.S., Caruso, F., Urquhart, R.S., Furlong, D.N., Sambles, J.R., Than, K.A., and Edgar, J.A. 1994. Immobilization of IgG onto gold surfaces and its interaction with anti-IgG studied by surface plasmon resonance. J. Immunological Methods. 175: 149–160.

  15. 15

    Krejchi, M.T., Atkins, E.D.T., Waddon, A.J., Fournier, M.J., Mason, T.L., and Tirrell, D.A. 1994. Chemical sequence control of β-sheet assembly in macromolecular crystals of periodic polypeptides. Science 265: 1427–1432.

  16. 16

    Sigal, G.B., Bamdad, C., Barberis, A., Strominger, J., and Whitesides, G.M. 1996. A self-assembled monolayer for the binding and study of histidine-tagged proteins by surface plasmon resonance. Anal. Chem. 68: 490–497.

  17. 17

    Brown, S. 1987. Mutations in the gene for EF-G reduce the requirement for 4.5S RNA in the growth of E. coli. Cell 49: 825–833.

  18. 18

    Boulain, J.C., Charbit, A., and Hofnung, M. 1986. Mutagenesis by random linker insertion into the lamB gene of Escherichia coli K12. Mol. Gen. Genet. 205: 339–348.

  19. 19

    Chang, A.C.Y. and Cohen, S.N. 1978. Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J. Bacteriol. 134: 1141–1156.

  20. 20

    Vieira, J. and Messing, J. 1992. The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19: 259–268.

  21. 21

    Gillet, D., Ducancel, F., Pradel, E., Léonetti, M., Ménez, A., and Boulain, J.-C. 1992. Insertion of a dilulfide-containing neurotoxin into E coli alkaline phosphatase: the hybrid retains both biological activities. Prot. Eng. 5: 273–278.

  22. 22

    Fire, A. and Xu, S.-Q. 1995. Rolling replication of short DNA circles. Proc. Natl. Acad. Sci. 92: 4641–4645.

  23. 23

    Nakai, H. and Richardson, C.C. 1988. The effect of the T7 and Escherichia coli DNA-binding proteins at the replication fork of bacteriophage T7. J. Biol. Chem. 263: 9831–9839.

  24. 24

    Inoue, H., Nojima, H., and Okayama, H. 1990. High efficiency transformation of Escherichia coli with plasmids. Gene 96: 23–28.

  25. 25

    Pääbo, S., Irwin, D.M., and Wilson, A.C. 1990. DNA damage promotes jumping between templates during enzymatic amplification. J. Biol. Chem. 265: 4718–4721.

  26. 26

    Miller, J.H. 1972. Experiments in molecular genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

  27. 27

    Ducancel, F., Boulain, J.-C., Trémeau, O., and Ménez, A. 1989. Direct expression in E coli of a functionally active protein A-snake toxin fusion protein. Prot Eng. 3: 139–143.

  28. 28

    Laemmli, U.K. Cleavage of structure proteins during assembly of the head of bacteriophage T4. Nature 227: 680–685.

  29. 29

    Schägger, H. and von Jagow, G. 1987. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 166: 368–379.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Further reading