Aβ deposition inhibitor screen using synthetic amyloid

Abstract

The formation, growth, and maturation of brain amyloid “senile” plaques are essential pathological processes in Alzheimer's disease (AD) and key targets for therapeutic intervention. The process of in vitro deposition of Aβ at physiological concentrations onto plaques in AD brain preparations has been well characterized, but is cumbersome for drug discovery. We describe here a high-throughput screen for inhibitors of Aβ deposition onto a synthetic template (synthaloid) of fibrillar Aβ immobilized in a polymer matrix. Synthaloid is indistinguishable from plaques in AD brain (the natural template) in deposition kinetics, pH profile, and structure-activity relationships for both Aβ analogs and inhibitors. Synthaloid, in contrast to current Aβ aggregation screens, accurately predicted inhibitor potency for Aβ deposition onto AD cortex preparations, validating its use in searching for agents that can slow the progression of AD and exposing a previously inaccessible target for drug discovery.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Hardy, J. and Allsop, D. 1991. Amyloid deposition as the central event in the etiology of Alzheimer's disease. Trends Pharmacol. Sci. 12: 383–388.

  2. 2

    Selkoe, D.J. 1994. Alzheimer's disease: a central role for amyloid. J. Neuropathol. Exp. Neurol. 53: 438–447.

  3. 3

    Vinters, H.V., Wang, Z.Z., and Secor, D.L. 1996. Brain parenchymal and microvascular amyloid in Alzheimer's disease. Brain. Pathol. 6: 179–195.

  4. 4

    Schenk, D.B., Russell, R.E., May, P., Little, S., Panetta, J., Lieberburg, I. et al. 1995. Therapeutic approaches related to amyloid-β peptide and Alzheimer's disease. J. Medic. Chem. 38: 4141–4154.

  5. 5

    Games, D., Adams, D., Alessandrini, R., Barbour, R., Berthelette, P., Blackwell, C. et al. 1995. Alzheimer-type neuropathology in transgenic mice overexpressing V717F beta-amyloid precursor protein. Nature 373: 523–527.

  6. 6

    LaFerla, P.M., Tinkle, B.T., Bieberich, C.J., Haudenschild, C.C., and Jay, G., 1995. Aβ peptide induces neurodegeneration and apoptotic cell death in transgenic mice. Nature Genetics 9: 21–29.

  7. 7

    Cummings, B.J. and Cotman, C.W. 1995. Image analysis of β-amyloid load in Alzheimer's disease and relation to dementia severity. Lancet 326: 1524–15287.

  8. 8

    Schellenberg, G.D. 1995. Genetic dissection of Alzheimer's disease, a heterogeneous disorder. Proc. Natl. Acad. Sci. USA 92: 8552–8559.

  9. 9

    Selkoe, D.J. 1996. Amyloid β-protein and the genetics of Alzheimer's disease. J. Biol. Chem. 271: 18295–18298.

  10. 10

    Scheuner, D., Eckman, C., Jensen, M., Song, X., Citron, M., Suzuki, N. et al. 1996. Secreted amyloid β-protein similar to that in the senile plaques of Alzheimer's disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer's disease. Nature Medicine 2: 864–870.

  11. 11

    Seubert, P., Vigo-Pelfrey, C., Esch, R., Lee, M., Dovey, H., Davis, D. et al. 1992. Isolation and quantification of soluble Alzheimer's β-peptide from biological fluids. Nature 359: 325–327.

  12. 12

    Haass, C., Schlossmacher, M.G., Hung, A.Y., Vigo-Pelfre, C., Mellon, A., Ostaszewski, B.L. et al. 1992. Amyloid beta-peptide is produced by cultured cells during normal metabolism. Nature 359: 322–325.

  13. 13

    Kirschner, D.A., Inouye, H., Duffy, L.K., Sinclair, A., Lind, M., and Selkoe, D.J. 1987. Synthetic peptide homologous to β protein from Alzheimer's disease forms amyloid-like fibrils in vitro. Proc. Natl. Acad. Sci. USA 84: 6953–6957.

  14. 14

    Jarrett, J.T. and Lansbury, P.T. 1993. Seeding “one-dimensional crystallization” of amyloid: a pathogenic mechanism in Alzheimer's disease and scrapie? Cell 73: 1055–1058.

  15. 15

    Zheng, H., Jiang, M., Trumbauer, M.E., Siriinathsinghji, D.J., Hopkins, R., Smith, D.W. et al. 1995. Beta-amyloid precursor protein-deficient mice show reactive gliosis and decreased locomoter activity. Cell 81: 525–553.

  16. 16

    Tomiyama, T., Shoji, A., Kataoka, K., Suwa, Y., Asano, S., Kaneko, H., and Endo, N. 1996. Inhibition of amyloid β-protein aggregation and neurotoxicity by rifampicin. J. Biol. Chem. 271: 6839–6844.

  17. 17

    Wood, S.J., MacKenzie, L., Maleeff, B., Hurle, M.R., and Wetzel, R. 1996. Selective inhibition of Aβ fibril formation. J. Biol. Chem. 271: 4086–4092.

  18. 18

    Pollack, S.J., Sadlere, I.I.J., Hawtin, S.R., Tailor, V.J., and Shearman, M.S. 1995. Sulfonated dyes attenuate the toxic effects of β-amyloid in a structure specific fashion. Neurosci. Lett. 197: 211–214.

  19. 19

    Soto, C., Kindy, M.S., Baumann, M., and Frangione, B. 1996. Inhibition of Alzheimer's amyloidosis by peptides that prevent β-sheet conformation. Biochem. Biophys. Res. Com. 226: 672–680.

  20. 20

    Tjernberg, L.O., Naslund, J., Lindqvist, F., Johansson, J., Karlstrom, A.R., Thyberg, J. et al. 1996. Arrest of beta-amyloid fibril formation by a pentapeptide ligand. J. Biochem. 271: 8545–8548.

  21. 21

    Maggio, J.E. and Mantyh, R.W. 1996. Brain amyloid—a physiochemical perspective. Brain. Pathol. 6: 147–162.

  22. 22

    Lomakin, A., Chung, D.S., Benedek, G.B., Kirschner, D.A., and Teplow, D.B. 1996. On the nucleation and growth of amyloid β-protein fibrils. Proc. Nat. Acad. Sci. USA 93: 1125–1129.

  23. 23

    Esler, W.P., Stimson, E.R., Ghilardi, J.R., Vinters, H.V., Lee, J.R., Mantyh, P.W. et al. 1996. In vitro growth of Alzheimer's disease β-amyloid plaques displays first-order kinetics. Biochemistry 35: 749–757.

  24. 24

    Naiki, H. and Nakakuki, K. 1996. First-order kinetic model of Alzheimer's β-amyloid fibril extension in vitro. Lab. Invest. 74: 374–383.

  25. 25

    Mantyh, P.W., Stimson, E.R., Ghilardi, J.R., Alien, C.J., Dahl, C.E., Whitcomb, D.C. et al. 1991. Reversible in vitro growth of Alzheimer disease β-amyloid plaques. Bull. Clin. Neurosci. 56: 73–85.

  26. 26

    Maggio, J.E., Stimson, E.R., Ghilardi, J.R., Alien, C.J., Dahl, C.E., Whitcomb, D.C. et al. 1992. Reversible in vitro growth of Alzheimer disease β-amyloid plaques by deposition of labeled amyloid peptide. Proc. Natl. Acad. Sci. USA 89: 5462–5466.

  27. 27

    Lee, J.R., Stimson, E.R., Ghilardi, J.R., Mantyh, P.W., Lum, Y.-A., Felix, A.M. et al. 1995. 1H NMR of Aβ amyloid peptide congeners in water solution. Conformational changes correlate with plaque competence. Biochemistry 34: 5191–5200.

  28. 28

    Esler, W.P., Stimson, E.R., Ghilardi, J.R., Lu, Y.-A., Felix, A.M., Vinters, H.V. et al. 1996. Point substitution in the central hydrophobic cluster of a human β-amyloid congener disrupts peptide folding and abolishes plaque competence. Biochemistry 44: 13914–13921.

  29. 29

    Weldon, D.T., Cleary, D.P., Esler, W.P., Ghilardi, J.R., O'Hare, E., Rogers, S.D. et al. 1996. Neurotoxicity of Aβ peptide: confocal imaging of cellular changes induced by β-amyloid in rat CNS in vivo. Soc. Neurosci. Abs. 22: 475.

  30. 30

    Evans, K.C., Berger, E.P., Cho, C.-G., Weisgraber, K.H., and Lansbury, P.T. 1995. Apolipoprotein E is a kinetic but not a thermodynamic inhibitor of amyloid formation: Implications for the pathogenesis and treatment of Alzheimer disease. Proc. Natl. Acad. Sci. USA. 92: 763–767.

  31. 31

    Kelly, J.W. 1996. Alternative conformations of amyloidogenic proteins govern their behavior. Curr. Opin. Struct. Biol. 6: 11–17.

  32. 32

    Hyman, B.T., West, H.L., Rebek, G.W., Buldyrev, S.V., Mantegna, R.N., Ukleja, M. et al. 1995. Quantitative analysis of senile plaques in Alzheimer disease: observation of log-normal size distribution and molecular epidemiology of differences associated with apolipoprotein E genotype and trisomy 21 (Down syndrome). Proc. Nat. Acad. Sci. USA 92: 3586–3590.

  33. 33

    Ghilardi, J.R., Catton, M., Stimson, E.R., Rogers, S., Walker, L.C., Maggio, J.E. et al. 1996. Intra-arterial infusion of 125l-Aβ1–40 labels amyloid deposits in the aged primate brain in vivo. NeuroReport 7: 2607–2511.

  34. 34

    Fraser, P.E., Nguyen, J.T., Inouye, H., Surewicz, W.K., Selkoe, D.J., Podlisny, M.B. et al. 1992. Fibril formation by rodent, Dutch-Hemorrhagic analogs of Alzheimer β-protein. Biochemistry 31: 10716–10723.

  35. 35

    Esler, W.P., Stimson, E.R., Jennings, J.J., Ghilardi, J.R., Mantyh, P.W., and Maggio, J.E. 1996. Zinc-induced aggregation of human and rat β-amyloid peptides in vitro. J. Neurochem. 66: 723–732.

  36. 36

    Mantyh, P.W., Ghilardi, J.R., Rogers, S., DeMaster, E., Alien, C.J., Stimson, E.R. et al. 1993. Aluminum, iron and zinc ions promote aggregation of physiological concentrations of β-amyloid peptide. J. Neurochem. 61: 1171–1174.

  37. 37

    Podlisny, M.B., Ostazewski, B.L., Sqazzo, S.L., Koo, E.H., Rydell, R.E., Teplow, D.B. et al. 1995. Aggregation of secreted amyloid β-protein into sodium dodecyl sulfate-stable oligomers in cell culture. J. Biol. Chem. 270: 9564–9570.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Further reading