Transgenic tobacco expressing Vitreoscilla hemoglobin exhibits enhanced growth and altered metabolite production


The gene for Vitreoscilla hemoglobin (VHb) has been introduced and expressed in Nicotiana tabaccum (tobacco). Transgenic tobacco plants expressing VHb exhibited enhanced growth, on average 80–100% more dry weight after 35 days of growth compaired to wild-type controls. Furthermore, germination time is reduced from 6–8 days for wild-type tobacco to 3–4 days and the growth phase from germination to flowering was 3–5 days shorter for the VHb-expressing transgenes. Transgenic plants contained, on average, 30–40% more chlorophyll and 34% more nicotine than controls. VHb expression also resulted in an altered distribution of secondary metabolites: In the transgenic tobacco plants anabasine content was decreased 80% relative to control plants.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Khosla, C. and Bailey, J.E. 1988. Heterologous expression of a bacterial haemoglobin improves the growth properties of recombinant Escherichia coli. Nature 331: 635–635.

  2. 2

    Bailey, J.E. 1995. Chemical engineering of cellular processes. Chem. Eng. Sci. 50: 4091–108.

  3. 3

    Kallio, P.T., Kim, J.P., Tsai, P.S., and Bailey, J.E. 1994. Intracellular metabolism under oxygen-limited conditions. Eur. J. Biochem. 219: 201–218.

  4. 4

    Tsai, P.S., Hatzimanikatis, V., and Bailey, J.E. 1995. Effect of Vitreoscillahemoglobin dosage on microaerobic Escherichia coli carbon and energy metabolism. Biotech. Bioeng. 48: 139–150.

  5. 5

    Chen, R. and Bailey, J.E. 1994. Energic effect of Vitreoscilla hemoglobin expression Escherichia coli: An on-line 31P NMR and saturation transfer study. Biotechnol. Prog. 10: 360–364.

  6. 6

    Tsai, P.S., Nägeli, M., and Bailey, J.E. 1996. Intracellular expression of Vitreoscillahemoglobin modifies microaerobic Escherichia coli metabolism through elevated concentration and specific activity of cytochrome o. Biotech. Bioeng. 49: 151–160.

  7. 7

    Chen, W., Hughes, D.E., and Bailey, J.E. 1994. Intracellular expression of Vitreoscilla hemoglobin alters the aerobic metabolism of Saccharomyces cerevisiae. Biotechnol. Prog. 10: 308–313.

  8. 8

    Pendse, G.J. and Bailey, J.E. 1994. Effect of Vitreoscilla hemoglobin expression on growth and specific tissue plasminogen activator productivity in recombinant Chinese hamster ovary cells. Biotech. Bioeng. 44: 1367–1370.

  9. 9

    Webster, D.A. and Liu, C.Y. 1974. Reduced nicotinamide adenine dinucleotide cytochrome o reductase associated with cytochtome o purified from Vitreoscilla. J. Biol. Chem. 249: 4257–4260.

  10. 10

    Sheen, S.J. 1988. Detection of nicotine in foods and plant materials. J. Food Sci. 53: 1572–1573.

  11. 11

    Bailey, J.E. 1991. Towards a science of metabolic engineering. Science 252: 1668–1675.

  12. 12

    Hoffman, P., Walter, G., Wiedenroth, E.-M., and Peine, G. 1993. How the cereal cope with oxygen dificiency. Photosynthetica 4: 495–513.

  13. 13

    Okubo, T. and Kawanabe, S. 1978. Maximum crop growth rate, photosynthesis and chlorophyll index in some pasture plants. JIBP Synthesis 19: 194–211.

  14. 14

    Wittenberg, J.B. and Wittenberg, B.A. 1990. Mechanisms of cytoplasmic hemoglobin and myoglobin function. Annu. Rev. Biophys. Chem. 19: 217–241.

  15. 15

    Schlatmann, J.E. et al. 1995. Relation between dissolved oxygen concentration and ajmalicin production rate in high-density cultures of Catharanthus roseus. Biotech. Bioeng.45: 435–439.

  16. 16

    Breuling, M., Alfermann, A.W., and Reinhard, E. 1985. Cultivation of cell cultures of Berberis wilsonaein 20-I airlift bioreactors. Plant Cell Rep. 4: 220–223.

  17. 17

    Friesen, J.B. and Leete, E. 1990. Nicotine synthase—an enzyme from nicotiana species which catalyses the formation of (S) —nicotine from nicotine acid and 1-methyl-Δ′-pyrrolinium chlorid. Tetrahedron Lett. 44: 6295–6298.

  18. 18

    Bogusz, D., Appleby, C.A., Landsmann, J., Dennis, E.S., Trinick, M.J., and Peacock, W.J. 1988. Functioning haemoglobin genes in non-nodulating plants. Nature 331: 178–180.

  19. 19

    Taylor, E.R., Zou Nie, X., MacGregor, A.W., and Hill, R.D. 1994. A cereal haemoglobin gene expressed in seed and root tissue under anaerobic conditions. Plant Mol. Biol. 24: 853–862.

  20. 20

    Sambrook, J., Fritsch, E.F., and Maniatis, T. 1990. Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

  21. 21

    Saki, R.K. et al. 1988. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239: 487–491.

  22. 22

    Walden, R., Koncz, C., and Schell, J. 1990. The use of gene vectors in plant molecular biology. MMCB 1: 175–194.

  23. 23

    Figurski, D.H. and Helinski, D.R. 1979. Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc. Natl. Acad. Sci. USA 76: 1648–1652.

  24. 24

    Edwards, K., Johnstone, C., and Thomson, C. 1991. A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucl. Acids Res. 19: 1349.

  25. 25

    Khosla, C. and Bailey, J.E. 1989. Evidence for partial export of Vitreoscillahemoglobin in the periplasmic space of Escherichia coli: Implications for protein function. J. Mol. Biol. 210: 79–90.

  26. 26

    Jefferson, R.A. 1987. Assaying chimeric genes in plants: The GUS gene fusion system. Plant. Mol. Biol. Rep. 5: 387–405.

  27. 27

    Murashige, T. and Skoog, F. 1962. A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol. Plant 15: 473–197.

  28. 28

    Rogers, S.G. and Fraley, R.T. 1986. Gene transfer to plants: production of transformed plants using Ti plasmid vectors. Methods Enzymol. 118: 627–684.

  29. 29

    Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head bacteriophage T4. Nature 277: 680–685.

  30. 30

    Curvall, M., Kazemi-Vala, E. and Enzell, C.R. 1982. Simultaneous determination of nicotine and cotinine in plasma using capillary column gas chromatography with nitrogen-sensitive detection. J. Chrom. 232: 283–293.

  31. 31

    Arnon, D.I. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 24: 1–15.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Further reading