Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research
  • Published:

DnaK-Mediated Alterations in Human Growth Hormone Protein Inclusion Bodies

Abstract

Protein overproduction in microbes frequently results in protein misfolding and aggregation though the molecular basis for this process is unclear. The HSP70 chaperonin, DnaK, was identified as an important factor controlling heterologous protein aggregation in Escherichia coli. Co-overproduction of DnaK significantly reduced human growth hormone (HGH) protein inclusion body formation and the extent of HGH aggregation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Marston, F.A.O. 1986. The purification of eukaryotic polypeptides synthesized in Escherichia coli. Biochem. J. 240: 1–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Schein, C.H. 1989. Production of soluble recombinant proteins in bacteria. Bio/Technology 7: 1141–1149.

    CAS  Google Scholar 

  3. Marston, F.A.O., Angal, S., Lowe, P.A., Chan, M. and Hill, C.R. 1988. Scale-up of the recovery and reactivation of recombinant proteins. Bioch. Soc. Trans. 16: 112–115.

    Article  CAS  Google Scholar 

  4. Konrad, M. 1989. Immunogenicity of proteins administered to humans for therapeutic purposes. TIBTECH 7: 175–179.

    Article  CAS  Google Scholar 

  5. Williams, D.C., Van Frank, R.M., Muth, W.L., Burnett, J. 1982 Cytoplasmic inclusion bodies in Escherichia coli producing biosynthetic human insulin proteins. Science 215: 687–689.

    Article  CAS  PubMed  Google Scholar 

  6. Leemans, R., Remaut, E., Fiers, W. 1987. A Broad-host-range expression vector based on the pL promoter of coliphage lambda: regulated synthesis of human interleukin 2 in Erwinia and Serratia species. J. Bacteriol. 169: 1899–1904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ruppen, M., Band, L., Hammer, D.J. 1986. Efficient expression of human growth hormone in Bacillus subtilis, p. 423–432. In: Bacillus Molecular Genetics and Biotechnology Applications. A. T. Ganesan, and J. A. Hoch, (Eds.). Academic Press, NY.

    Chapter  Google Scholar 

  8. Hayakawa, T., Toibana, A., Marumoto, R., Nakahama, K., Kikuchi, M., Fujimoto, K. and Ikehara, M. 1987. Expression of human lysozome in an insoluble form in yeast. Gene 56: 53–60.

    Article  CAS  PubMed  Google Scholar 

  9. Sedivy, J.M. 1988. New genetic methods for mammalian cells. Bio/ Technology 6: 1192–1202.

    Article  CAS  Google Scholar 

  10. Gribskov, M. and Burgess, R.R. 1983. Overexpression and purification of the sigma subunit of Escherichia coli RNA polymerase. Gene 26: 109–118.

    Article  CAS  PubMed  Google Scholar 

  11. Kopetzki, E., Schumacher, G., Buckel, P. 1989. Control of formation of active soluble or inactive insoluble baker's yeast alpha-glucosidase PI in Escherichia coli by induction and growth conditions. Mol. Gen. Genet. 216: 149–155.

    Article  CAS  PubMed  Google Scholar 

  12. Wilkinson, D.L. and Harrison, R.G. 1991. Predicting the solubility of recombinant proteins in Escherichia coli. Bio/Technology 9: 443–448.

    CAS  Google Scholar 

  13. Pelham, H.R.B. 1986. Speculations on the functions of the major heat shock and glucose regulated proteins. Cell 46: 959–961.

    Article  CAS  PubMed  Google Scholar 

  14. Rothman, J.E. 1989. Poiypeptide chain binding proteins: catalysts of protein folding and related processes in cells. Cell 59: 591–601.

    Article  CAS  PubMed  Google Scholar 

  15. Gross, C.A., Straus, D.B., Erickson, J.W., Takahashi, Y. 1990. The function and regulation of heat shock proteins in Escherichia coli, p. 167–189. In: Stress Proteins in Biology and Medicine. Eds: Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  16. Georgopoulos, C., Ang, D., Liberek, K. and Zylicz, M. 1990. Properties of the Escherichia coli heat shock proteins and their role in bacteriophage lambda growth, p. 192–222. In: Stress Proteins in Biology and Medicine. Eds: Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  17. Matin, A., Auger, E.A., Blum, P.H. and Schultz, J.E. 1989. Genetic basis of starvation survival in nondifferentiating bacteria. Ann. Rev. Microbiol. 43: 293–316.

    Article  CAS  Google Scholar 

  18. Skowyra, D., Georgopoulos, C. and Zylicz, M. 1990. The E. coli dnaK gene product, the hsp70 homolog, can reactivate heat-inactivated RNA polymerase in an ATP hydrolysis-dependent manner. Cell 62: 939–944.

    Article  CAS  PubMed  Google Scholar 

  19. Gaitanaris, G.A., Papavassiliou, A.G., Rubock, A.G., Silverstein, S.J. and Gottesman, M.E. 1990. Renaturation of denatured lambda repressor requires heat shock proteins. Cell 61: 1013–1020.

    Article  CAS  PubMed  Google Scholar 

  20. De Boer, H.A., Comstock, L.J. and Vasser, M. 1983. The tac promoter: a functional hybrid derived from the trp and lac promoters. Proc. Natl. Acad. Sci. USA 80: 21–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Miller, J.H., Lebkowski, J.S., Greisen, K.S. and Calos, M.P. 1984. Specificity of mutations induced in transfected DNA by mammalian cells. EMBO J.. 3: 3117–3121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Deshaies, R.J., Koch, B.D., Werner-Washburne, M. and Craig, E.A. 1988. 70kD stress protein homologues facilitate translocation of secretory and mitochondrial precursor polypeptides. Nature 332: 800–805.

    Article  CAS  PubMed  Google Scholar 

  23. Schein, C.H. and Noteborn, M.H.M. 1988. Formation of soluble recombinant proteins in Escherichia coli is favored by lower growth temperature. Bio/Technology 6: 291–294.

    CAS  Google Scholar 

  24. Groat, R.G., Schultz, J.E., Zychlinsky, E., Bockman, A. and Matin, A. 1986. Starvation proteins in Escherichia coli: kinetics of synthesis and role in starvation survival. J. Bacteriol. 168: 486–493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jenkins, D.E., Schultz, J.E. and Matin, A. 1988. Starvation-induced cross protection against heat or H202 challenge in Escherichia coli. J. Bacteriol. 170: 3910–3914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Spence, J., Cegielska, A. and Georgopoulos, C. 1990. Role of Escherichia coli heat shock proteins DnaK and HtpG (C62.5) in response to nutritional deprivation. J. Bacteriol. 172: 7157–7166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bardwell, J.C. and Craig, E.A. 1984. Major heat shock gene of Drosophila and the Escherichia coli heat-inducible dnaK gene are homologous. Proc. Natl. Acad. Sci. USA. 81: 848–852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Goeddel, D.V., Heyneker, H.L., Hozumi, T., Arentzen, R., Itakura, K., Yansura, D.G., Ross, M.J., Miozzari, G., Crea, R. and Seeburg, P.H. 1979. Direct expression in Escherichia coli of a DNA sequence coding for human growth hormone. Nature 281: 544–548.

    Article  CAS  PubMed  Google Scholar 

  29. Miller, J. 1984. Experiments in Molecular Genetics, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  30. Golubinoff, P., Gatenby, A.A. and Lorimer, G.H. 1989. GroE heat-shock proteins promote assembly of foreign prokaryotic ribulose biphosphate carboxylase oligomers in Escherichia coli. Nature 337: 44–47

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blum, P., Velligan, M., Lin, N. et al. DnaK-Mediated Alterations in Human Growth Hormone Protein Inclusion Bodies. Nat Biotechnol 10, 301–304 (1992). https://doi.org/10.1038/nbt0392-301

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0392-301

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing