Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

RFLP Mapping in Plant Breeding: New Tools for an Old Science

Abstract

Breeders have traditionally improved plant varieties by selecting on the basis of phenotype. Now restriction fragment length polymorphism (RFLP) linkage maps are being constructed for most major crop plants and these maps provide a more direct method for selecting desirable genes via their linkage to easily detectable RFLP markers. The integration of RFLP techniques into plant breeding promises to: (1) Expedite the movement of desirable genes among varieties, (2) Allow the transfer of novel genes from related wild species, (3) Make possible the analysis of complex polygenic characters as ensembles of single Mendelian factors, and (4) Establish genetic relationships between sexually incompatible crop plants. In the future, high density RFLP maps may also make it possible to clone genes whose products are unknown, such as genes for disease resistance or stress tolerance.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

References

  1. Allard, R.W. 1960. Principles of Plant Breeding. John Wiley & Sons, Inc., New York.

    Google Scholar 

  2. Mendel, G. 1865. Versuche über Pflanzen-Hybriden. Verb. Naturf.-Ver. Brunn IV:3–47 (English translation published as a pamphlet by Harvard University Press, Cambridge, MA, 1925).

    Google Scholar 

  3. Emerson, R.A., Beadle, G.W., and Eraser, A.C. 1935. A summary of linkage studies in maize. Cornell Univ. Agr. Exp. Sta. Memoir 180.

  4. MacArthur, J.W. 1934. Linkage groups in tomato, J. Genet. 29:123–133.

    Article  Google Scholar 

  5. Sax, K. 1923. The association of size differences with seed-coat pattern and pigmentation in Phaseolus vulgaris. Genetics 8:552–560.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Thoday, J.M. 1961. Location of polygenes. Nature 191:368–370.

    Article  Google Scholar 

  7. Tanksley, S.D. and Orton, T.J. 1983. Isozymes in Plant Genetics and Breeding, Parts 1A and 1B. Elsevier, Amsterdam.

    Google Scholar 

  8. Tanksley, S.D. 1983. Molecular markers in plant breeding. Plant Mol. Biol. Rep. 1:3–8.

    Article  CAS  Google Scholar 

  9. Botstein, D., White, R.L., Skolnick, M., and Davis, R.W. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 32:314–331.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Wyman, A.R. and White, R. 1980. A highly polymorphic locus in human DNA. Proc. Natl. Acad. Sci. U.S.A. 77:6754–6758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Donis-Keller, H., Green, P., Helms, C., Cartinhour, S., Weiffenbach, B., Stephens, K., Keith, T.P., Bowden, D.W., Smith, D.R., Lander, E.S., Botstein, D., Akots, G., Rediker, K.S., Gravius, T., Brown, V.A., Rising, M.B., Parkers, C., Powers, J.A., Watt, D.E., Kauffman, E.R., Bricker, A., Phipps, R., Muller-Kahle, H., Fulton, T.R., Ng S. Schumm, J.W., Braman, J.C., Knowlton, R.G., Barker, D.F., Crooks, S.M., Lincoln, S.E., Daly, M.J., and Abrahamson, J. 1987. A genetic linkage map of the human genome. Cell 51:319–337.

    Article  CAS  PubMed  Google Scholar 

  12. Tanksley, S., Miller, J., Paterson, A., and Bernatzky, R. 1988. Molecular mapping of plant chromosomes, p. 157–173. In: Chromosome Structure and Function. Gustafson, J. F., and Appels, R., (Eds.). Plenum, New York.

    Chapter  Google Scholar 

  13. Helentjaris, T., King, G., Slocum, M., Siedenstrang, C., and Wegman, S. 1985. Restriction fragment polymorphisms as probes for plant diversity and their development as tools for applied plant breeding. Plant Mol. Biol. 5:109–118.

    Article  CAS  PubMed  Google Scholar 

  14. Tanksley, S.D., Bernatzky, R., Lapitan, N.L., and Prince J.P. 1988. Conservation of gene repertoire but not gene order in pepper and tomato. Proc. Natl. Acad. Sci. U.S.A. 85:6419–6423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. McCouch, S.R., Kochert, G., Yu, Z.H., Wang, Z.Y., Khush, G.S., Coffman, W.R., Tanksley, S.T. 1988. Molecular mapping of rice chromosomes. Theor. Appl. Genet. In press.

  16. Chang, C., Bowman, J.C., DeJohn, A.W., Lander, E.S., and Meyerowitz, E.S. 1988. Restriction fragment length polymorphism linkage map for Arabidopsis lhaliana. Proc. Natl. Acad. Sci. U.S.A. 85:6856–6860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Helentjaris, T. 1987. A genetic linkage map for maize based on RFLPs. Trends in Genet. 3:217–221.

    Article  CAS  Google Scholar 

  18. Landry, B.S., Kesseli, R.V., Farrara, B., and Michelmore, R.W. 1987. A genetic map of lettuce (Lactuca saliva L.) with restriction fragment length polymorphism, isozyme, disease resistance and morphological markers. Genetics 116 331–337.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Bonierbale, M.W., Plaisted, R.L., and Tanksley, S.D. 1988. RFLP maps based on a common set of clones reveal modes of chromosomal evolution in potato and tomato. Genetics 120:1095–1103.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Zeven, A.C., and van Harten, A.M. 1979. (Eds.) Proceedings of the Conference, Broadening the Genetic Base of Crops. Pudoc, Wageningen, Netherlands.

    Google Scholar 

  21. Young, N.D., Zamir, D., Canal, M.W., and Tanksley, S.D. 1988. Use of isogenic lines and simultaneous probing to identify DNA markers tightly linked to the Tm-2a gene in tomato. Genetics 120:579–585.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Paterson, A.H., Lander, E.S., Hewitt, J.D., Peterson, S., Lincoln, S.E., and Tanksley, S.D. 1988. Resolution of quantitative traits into Mendelian factors by using a complete RFLP linkage map. Nature 335:721–726.

    Article  CAS  PubMed  Google Scholar 

  23. Murray, M. Agrigenetics Corporation (personal communication).

  24. Falconer, D.S. 1960. Introduction to Quantitative Genetics. Ronald Press Co., New York.

    Google Scholar 

  25. Lander, E.S., and Botstein, D. 1989. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Osborne, T.C., Alexander, D.C., and Fobes, J.F. 1987. Identification of restriction fragment length polymorphisms linked to genes controlling soluble solids content in tomato fruit. Theor. Appl. Genet. 73:350–356.

    Article  Google Scholar 

  27. Tanksley, S.D., and Hewitt, J. 1988. Use of molecular markers in breeding for soluble solids content in tomato—a re-examination. Theor. Appl. Genet. 75:811–823.

    Article  CAS  Google Scholar 

  28. Young, N.D. and Tanksley, S.D. 1988. Restriction fragment length polymophism maps and the concept of graphical genotypes. Theor. Appl. Genet. In press.

  29. Stam, P., and Zeven, A.C. 1981. The theoretical proportion of the donor genome in near-isogenic lines of self-fertilizers bred by back-crossing. Euphytica 30:227–238.

    Article  Google Scholar 

  30. Zeven, A.C., Knott, D.R., and Johnson, R. 1983. Investigation of linkage drag in near isogenic lines of wheat by testing for seedling reaction to races of stem rust, leaf rust and yellow rust. Euphytica 32:319–327.

    Article  Google Scholar 

  31. Young, N.D. and Tanksley, S.D. 1989. RFLP analysis of the size of chromosomal segments retained around the Tm-2 locus of tomato during backcross breeding. Theor. Appl. Genet. In press.

  32. Hawks, J.G. 1977. The importance of wild germplasm in plant breeding. Euphytica 26:615–621.

    Article  Google Scholar 

  33. Goodman, R.M., Hauptli, H., Crossway, A., and Knaut, V.C. 1987. Gene transfer in crop improvement. Science 236:48–54.

    Article  CAS  PubMed  Google Scholar 

  34. Stalker, H.T. 1980. Utilization of wild species for crop improvement. Adv. Agron. 33:111–147.

    Article  Google Scholar 

  35. Gleba, Y.Y. and Sytnik, K.M. 1984. Protoplast Fusion and Genetic Engineering in Plants. Springer-Verlag, Berlin.

    Book  Google Scholar 

  36. Gale, M. (personal communication).

  37. Tanksley, S.D. et al. unpublished data.

  38. McNaughton, I.H. 1976. Turnip and relatives, p. 45–48. In: Evolution of Crop Plants. Simmonds, H. W. (Ed.) Longman, New York.

    Google Scholar 

  39. Smith, J.P., Jr., 1977. Vascular Plant Families. Mad River Press, Eureka, CA.

    Google Scholar 

  40. Maniatis, T., Frisch, E.F., and Sambrook, J. 1982. Molecular Cloning. Cold Spring Harbor Laboratory. Cold Spring Harbor, N.Y.

    Google Scholar 

  41. Federoff, N.V., Furtek, D.B., and Nelson, O.E., Jr., 1984. Cloning of the bronze locus in maize by a simple and generalizable procedure using the transposable controlling element Activator (Ac). Proc. Natl. Acad. Sci. U.S.A. 81:3825–3829.

    Article  Google Scholar 

  42. Baker, B., Schell, J., Lörz, H., and Federoff, N. 1986. Transposition of the maize controlling element “Activator” in tobacco. Proc. Natl. Acad. Sci. U.S.A. 83:4844–4848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Orkin, S.H. 1986. Reverse genetics and human disease. Cell 47:845–850.

    Article  CAS  PubMed  Google Scholar 

  44. Steinmetz, M., Minard, K., Harvath, S., McNicholas, J., Srenlinger, J., Wake, C., Long, E., Mach, B., and Hood, L. 1981. A molecular map of the immune response region of the major histocompatibility complex of the mouse. Nature 300:35–42.

    Article  Google Scholar 

  45. Poutska, A., Pohl, T., Barlow, D.P., Zehetner, G., Craig, A., Michiels, F., Ehrich, E., Frischauf, A.-M., and Lehrach, H. 1986. Molecular approaches to mammalian genetics. Cold Spring Harbor Symposium on Quantitative Biology 51:131–139.

    Google Scholar 

  46. Klee, H.J., Hayford, M.B., and Rogers, S.B. 1988. Gene rescue in plants: A model for “shotgun” cloning by retransformation. 210:282–287.

  47. Fehr, W.R. . (Ed) Genetic Contributions of Yield Gains of Five Major Crop Plants. Crop Science Society of America, Madison, WI.

  48. Abel, P., Nelson, R.S., De, B., Hoffman, N., Rogers, S.G., Fraley, R.T., and Beachy, R.N. 1986. Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science 232:738–743.

    Article  CAS  PubMed  Google Scholar 

  49. Loesch-Fries, L., Merlo, D., Zinnen, T., Burhop, L., Hill, K., Krahn, D., Jarvis, N., Nelson, S., and Halk, E. 1987. Expression of alfalfa mosaic virus RNA 4 in transgenic plants confers virus resistance. EMBO J. 6:1845–1851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Vaeck, M. et al. 1987. Transgenic plants protected from insect attack. Nature 328:33–37.

    Article  CAS  Google Scholar 

  51. Schroeder, W.T., Provvidenti, R., and Robinson, R.W. 1967. Incubation temperature and virus strains important in evaluating tomato genotypes for tobacco mosaic virus reactions. Tomato Genet. Coop. Rep. 17:47–48.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanksley, S., Young, N., Paterson, A. et al. RFLP Mapping in Plant Breeding: New Tools for an Old Science. Nat Biotechnol 7, 257–264 (1989). https://doi.org/10.1038/nbt0389-257

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0389-257

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing