Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Metabolic control analysis in drug discovery and disease

Abstract

Metabolic control analysis (MCA) provides a quantitative description of substrate flux in response to changes in system parameters of complex enzyme systems. Medical applications of the approach include the following: understanding the threshold effect in the manifestation of metabolic diseases; investigating the gene dose effect of aneuploidy in inducing phenotypic transformation in cancer; correlating the contributions of individual genes and phenotypic characteristics in metabolic disease (e.g., diabetes); identifying candidate enzymes in pathways suitable as targets for cancer therapy; and elucidating the function of "silent" genes by identifying metabolic features shared with genes of known pathways. MCA complements current studies of genomics and proteomics, providing a link between biochemistry and functional genomics that relates the expression of genes and gene products to cellular biochemical and physiological events. Thus, it is an important tool for the study of genotype–phenotype correlations. It allows genes to be ranked according to their importance in controlling and regulating cellular metabolic networks. We can expect that MCA will have an increasing impact on the choice of targets for intervention in drug discovery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Definition of a control coefficient of an enzymatic step.
Figure 2: A double logarithmic plot of the dependence of tumor cell proliferation, versus an hypothetical enzyme A activity.

Similar content being viewed by others

References

  1. Weng, G., Bhalla, U.S. & Iyengar, R. Complexity in biological signaling systems. Science 284, 92–95 (1999).

    Article  CAS  Google Scholar 

  2. Brent, R. Genomic biology. Cell 10, 169–183 (2000).

    Article  Google Scholar 

  3. Lander, E.S. Array of hope. Nat. Genet. 21, 3–4 (1999).

    Article  CAS  Google Scholar 

  4. Hieter, P. & Bogusky, M. Functional genomics: it's all how you read it. Science 278, 601–602 (1997).

    Article  CAS  Google Scholar 

  5. Eisenberg, D., Marcotte, E.M., Xenarios, I. &Yates, T.O. Protein function in the post-genomic era. Nature 405, 823–826 (2000).

    Article  CAS  Google Scholar 

  6. Schuster, S., Dandekar, T. & Fell, D.A. Detection of elementary flux modes in biochemical networks: a promising tool for pathway analysis and metabolic engineering. Trends Biotechnol. 17, 53–60 (1999).

    Article  CAS  Google Scholar 

  7. Dang, C.V. & Semenza, G.L. Oncogenic alterations of metabolism. Trends Biochem. Sci. 24, 68–72 (1999).

    Article  CAS  Google Scholar 

  8. Westerhoff, H.V., Koster, J.G., Van Workum, M. & Rudd, K.E. On the control of gene expression. in Control of metabolic processes (ed. Cornish-Bowden, A.) 399–412 (Plenum, New York, 1990).

    Chapter  Google Scholar 

  9. Cornish-Bowden, A & Cárdenas, M.L. From genome to cellular phenotype—a role for metabolic flux analysis? Nat. Biotechnol. 18, 267–268 (2000).

    Article  CAS  Google Scholar 

  10. Bailey, J.E. Reflections on the scope and the future of metabolic engineering and its connections to functional genomics and drug discovery. Metab. Eng. 3, 111–114 (2001).

    Article  CAS  Google Scholar 

  11. Stephanopoulos, G. & Vallin, J.J. Network rigidity and metabolic engineering in metabolite overproduction. Science 252, 1675–1681 (1991).

    Article  CAS  Google Scholar 

  12. Cornish-Bowden, A. Kinetics of multi-enzyme systems. in Biotechnology, a comprehensive treatise Vol. 9, Edn. 2 (eds. Rehm, H.-J & Reed, G.) 121–136 (Springer-Verlag, Weinheim, Germany, 1995).

    Google Scholar 

  13. Bailey, J.E. Lessons from metabolic engineering for functional genomics and drug discovery. Nat. Biotechnol. 17, 616–618 (1999).

    Article  CAS  Google Scholar 

  14. Stephanopoulos, G. & Sinskey, A.J. Metabolic engineering—methodologies and future prospects. Trends Biotechnol. 11, 392–396 (1993).

    Article  CAS  Google Scholar 

  15. Nielsen, J. Metabolic engineering: tecniques for analysis of targets for genetic manipulations. Biotechnol. Bioeng. 58, 127–132 (1998).

    Article  Google Scholar 

  16. Savageau, M. Biochemical system analysis. A study of function and design in molecular biology (Addison-Wesley, Reading, MA, 1976).

  17. Voit E.O. Computational analysis of biochemical systems (Cambridge University Press, Cambridge, 2000).

    Google Scholar 

  18. Fell, D. Understanding the control of metabolism (Portland Press, London, 1997).

    Google Scholar 

  19. Cornish-Bowden, A. & Cárdenas, M.L. Technological and medical implications of metabolic control analysis (Kluwer, Dordrecht, The Netherlands, 2000).

    Book  Google Scholar 

  20. Rossignol, R., Letellier, T., Malgrat, M., Rocher, C., Mazat, J.P. Tissue variation in the control of oxidative phosphorylation: implication for mitochondrial diseases. Biochem J. 347, 45–53 (2000).

    Article  CAS  Google Scholar 

  21. Cornish-Bowden, A. & Eisenthal, R. Prospects for pharmacological manipulation of metabolism. in New beer in an old bottle (ed. Cornish-Bowden, A.) 215–224 (Universitat de Valencia, Spain, 1997).

    Google Scholar 

  22. Salter, M., Knowles, R.G. & Pogson, C.I. Metabolic control. Essays Biochem. 28, 1–12 (1994).

    CAS  PubMed  Google Scholar 

  23. Raamsdonk, L.M et al. A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations. Nat. Biotechnol. 19, 45–50 (2001).

    Article  CAS  Google Scholar 

  24. Cornish-Bowden, A. & Cárdenas, M.L. Complex networks of interactions connect genes to phenotypes. Trends Biochem. Sci. 26, 463–465 (2001).

    Article  CAS  Google Scholar 

  25. Oliver, S.G. From DNA sequence to biological function. Nature 379, 597–600 (1996).

    Article  CAS  Google Scholar 

  26. Teusink, B., Baganz, F., Westerhoff, H.V. & Oliver, S.G. Metabolic control analysis as a tool in the elucidation of the function of novel genes. Methods Microbiol. 26, 297–336 (1998).

    Article  CAS  Google Scholar 

  27. Hofmeyr, J.H., Cornish-Bowden, A. & Rohwer, J.M. Taking enzyme kinetics out of control; putting control into regulation. Eur. J. Biochem. 212, 833–837 (1993).

    Article  CAS  Google Scholar 

  28. Hofmeyr, J.H. & Cornish-Bowden, A. Co-response analysis: a new experimental strategy for metabolic control analysis. J. Theor. Biol. 182, 371–380 (1996).

    Article  CAS  Google Scholar 

  29. Kholodenko, B.N., Schuster, S., Rohwer, J.M., Cascante, M. & Westerhoff, H.V. Composite control of cell function: metabolic pathways behaving as single control units. FEBS Lett. 368, 1–4 (1995).

    Article  CAS  Google Scholar 

  30. Rohwer, J.M., Schuster, S. & Westerhoff, H.V. How to recognize monofunctional units in a metabolic system. J. Theoret. Biol. 179, 213–228 (1996).

    Article  CAS  Google Scholar 

  31. Cornish-Bowden, A. & Cárdenas, M.L. Functional genomics. Silent genes given voice. Nature 409, 571–572 (2001).

    Article  CAS  Google Scholar 

  32. Johnson, R.A. & Wichern, D.W. Applied multivariate statistical analysis Edn. 4 (Practice Hall, Englewood Cliffs, NJ, 1998).

    Google Scholar 

  33. Mazat, J.P. et al. What do mitochondrial diseases teach us about normal mitochondrial functions...that we already knew: threshold expression of mitochondrial defects. Biochim. Biophys. Acta, 1504, 20–30 (2001).

    Article  CAS  Google Scholar 

  34. Agius, L. The physiological role of glucokinase binding and translocation in hepatocytes. Adv. Enzyme Regulation 38, 303–331 (1998).

    Article  CAS  Google Scholar 

  35. Velho, G. et al. Impaired hepatic glycogen synthesis in glucokinase-deficient (MODY-2) subjects. J. Clin. Invest. 98, 1755–1761 (1996).

    Article  CAS  Google Scholar 

  36. Froguel, P. et al. Familial hyperglycemia due to mutations in glucokinase. Definition of a subtype of diabetes mellitus. New Eng. J. Med. 328, 697–702 (1993).

    Article  CAS  Google Scholar 

  37. Agius, L., Peak, M., Newgard, C.B., Gómez-Foix, A.M. & Guinovart, J.J. Evidence for a role of glucose-induced translocation of glucokinase in the control of hepatic glycogen synthesis. J. Biol. Chem. 271, 30479–30486 (1996).

    Article  CAS  Google Scholar 

  38. Kacser, H. & Burns, J.A. The molecular basis of dominance. Genetics 97, 639–666 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Hollán, S. et al. Hereditary triosephosphate isomerase (TPI) deficiency: two severely affected brothers, one with and one without neurological symptoms. Hum. Genet. 92, 486–490 (1993).

    Article  Google Scholar 

  40. Orosz, F., Vértessy, B.G., Hollán, S., Horányi, M. & Ovádi, J. Triosephosphate isomerase deficiency: predictions and facts. J. Theor. Biol. 182, 437–447 (1996).

    Article  CAS  Google Scholar 

  41. Schuster, R. & Holzhütter, H.-G. Use of mathematical models for predicting the metabolic effect of large-scale enzyme activity alterations. Application to enzyme deficiencies of red blood cells. Eur. J. Biochem. 229, 403–418 (1995).

    Article  CAS  Google Scholar 

  42. Mitelman, F. Catalogue of chromosome aberrations in cancer (Wiley-Liss, New York, 1994).

    Google Scholar 

  43. Mitelman, F., Mertens, F. & Johansson, B. A breakpoint map of recurrent chromosomal rearrangements in human neoplasia. Nat. Genet. 15, 417–474 (1997).

    Article  CAS  Google Scholar 

  44. Sandberg, A.A. The chromosome in human cancer and leukemia Edn. 2 (Elsevier Science Publishing, New York, 1990).

    Google Scholar 

  45. von Hansemann, D. Ueber asymmetrische zellteilung in epithelkrebsen und deren biologische bedeutung. Virchows Arch. Pathol. Anat. 119, 299–336 (1890).

    Article  Google Scholar 

  46. Boveri, T. Zur Frage der entstehung maligner Tumouren (Fisher, Jena, 1914).

  47. Bauer K.H. Das Krebsproblem, Edn. 1 (Springer, Berlin, Göttingen and Heidelberg, 1963).

    Book  Google Scholar 

  48. Rasnick, D. & Duesberg, P.H. How aneuploidy affects metabolic control and causes cancer. Biochem. J. 340, 621–630 (1999).

    Article  CAS  Google Scholar 

  49. Warburg, O. The metabolism of tumors (Constable, London, 1930).

    Google Scholar 

  50. Warburg, O. On the origin of cancer cells. Science 123, 309–314 (1956).

    Article  CAS  Google Scholar 

  51. Krebs., E.T. Jr., Krebs, E.T. Sr. & Beard, H.H. The unitarian or trophoblastic thesis of cancer. Med. Record 163, 150–171 (1950).

    Google Scholar 

  52. Horecker, B.L. Pathways of carbohydrate metabolism and their physiological significance. J. Chem. Ed. 42, 244–253 (1965).

    Article  CAS  Google Scholar 

  53. Raylman, R.R., Fisher, S.J., Brown, R.S., Ethier, S.P. & Wahl, R.L. Fluorine-18-fluorodeoxyglucose-guided breast cancer surgery with a positron-sensitive probe: validation in preclinical studies. J. Nuclear Med. 36, 1869–1874 (1995).

    CAS  Google Scholar 

  54. Torizuka, T. et al. Myocardial oxidative metabolism in hyperthyroid patients assessed by PET with carbon-11-acetate. J. Nuclear Med. 36, 1811–1817 (1995).

    CAS  Google Scholar 

  55. Strauss, L.G. & Conti, P.S. The applications of PET in clinical oncology. J. Nuclear Med. 32, 623–648 (1991).

    CAS  Google Scholar 

  56. Bares, R. et al. F-18 fluorodeoxyglucose PET in vivo evaluation of pancreatic glucose metabolism for detection of pancreatic cancer. Radiology 192, 79–86 (1994).

    Article  CAS  Google Scholar 

  57. Cascante, M, Centelles, J.J., Veech, R.L., Lee W-N.P. & Boros, L.G. Role of thiamin (vitamin B-1) and transketolase in tumor cell proliferation. Nutr. Canc. 36, 150–154 (2000).

    Article  CAS  Google Scholar 

  58. Boros, L.G. et al. Transforming growth factor β2 promotes glucose carbon incorporation into nucleic acid ribose through the nonoxidative pentose cycle in lung epithelial carcinoma cells. Cancer Res. 60, 1183–1185 (2000).

    CAS  PubMed  Google Scholar 

  59. Boros, L.G. et al. Oxythiamine and dehydroepiandrosterone inhibit the nonoxidative synthesis of ribose and tumor cell proliferation. Cancer Res. 57, 4242–4248 (1997).

    CAS  PubMed  Google Scholar 

  60. Comin-Anduix, B. et al. The effect of thiamine supplementation on tumour proliferation. A metabolic control analysis study. Eur. J. Biochem. 268, 4177–4188 (2001).

    Article  CAS  Google Scholar 

  61. Rais, B., et al. Oxythiamine and dehydroepiandrosterone induce a G1 phase cycle arrest in Ehrlich's tumor cells through inhibition of the pentose cycle. FEBS Lett. 456, 113–118 (1999).

    Article  CAS  Google Scholar 

  62. Boros, L.G. et al. Wheat germ extract decreases glucose uptake and RNA ribose formation but increases fatty acid synthesis in MIA pancreatic adenocarcinoma cells. Pancreas 23, 141–147 (2001).

    Article  CAS  Google Scholar 

  63. Boros, L.G., Bassilian, S., Lim, S. & Lee, W.N. Genistein inhibits nonoxidativa ribose synthesis in MIA pancreatic adenocarcinoma cells: a new mechanism of controlling tumor growth. Pancreas 22, 1–7 (2001).

    Article  CAS  Google Scholar 

  64. Bakker, B.M., Michels, P.A., Opperdoes, F.R. & Westerhoff, H.V. Glycolysis in bloodstream form Trypanosoma brucei can be understood in terms of the kinetics of the glycolytic enzymes. J. Biol. Chem. 272, 3207–3215 (1997).

    Article  CAS  Google Scholar 

  65. Eisenthal, R. & Cornish-Bowden, A. Prospects for antiparasitic drugs. The case of Trypanosoma brucei, the causative agent of African sleeping sickness. J. Biol. Chem. 273, 5500–5505 (1998).

    Article  CAS  Google Scholar 

  66. Bakker, B.M., Michels, P.A., Opperdoes, F.R. & Westerhoff, H.V. What controls glycolysis in bloodstream form Trypanosoma brucei? J. Biol. Chem. 274, 14551–14559 (1999).

    Article  CAS  Google Scholar 

  67. Michels, P.A. Compartmentation of glycolysis in trypanosomes: a potential target for new trypanocidal drugs. Biol. Cell 64, 157–164 (1988).

    Article  CAS  Google Scholar 

  68. Bakker, B.M., Westerhoff, H.V., Opperdoes, F.R. & Michels, P.A. Metabolic control analysis of glycolysis in Trypanosomes as an approach to improve selectivity and effectiveness of drugs. Mol. Biochem. Parasitol 106, 1–10 (2000).

    Article  CAS  Google Scholar 

  69. Cornish-Bowden, A. & Eisenthal, R. Computer simulation as a tool for studying metabolism and drug design. In Technological and medical implications of metabolic control analysis (eds. Cornish-Bowden, A. & Cárdenas, M.L.) 165–172 (Kluwer, Dordrecht, The Netherlands, 2000).

    Chapter  Google Scholar 

  70. Kacser, H. & Small, J.R. How many phenotypes from one genotype? The case of Prion diseases. J. Theor. Biol. 182, 209–218 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Spanish Government Science Technology Ministry (PPQ2000-0688-C05-04) and Health Ministry (FISS 00-1120), the European Commission Grant INCO-COPERNICUS (ERBIC15CT960307), and the NATO Science Program (SA, LST.CLG.976283). The Biomedical Mass Spectrometry Facility is supported by USPHS grants P01-CA42710 to the UCLA Clinical Nutrition Research Unit, Stable Isotope Core, and M01-RR00425 to the General Clinical Research Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Cascante.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cascante, M., Boros, L., Comin-Anduix, B. et al. Metabolic control analysis in drug discovery and disease. Nat Biotechnol 20, 243–249 (2002). https://doi.org/10.1038/nbt0302-243

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0302-243

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing