
BOOK REVIEW

http://biotech.nature.com • MARCH 2002 • VOLUME 20 • nature biotechnology

Beginning Perl for Bioinformatics
By James Tisdall

O’Reilly & Associates; $39.95, 368 pp,
paperback, ISBN 0-596-00080-4, 2001

Biologists these days can generate vast
quantities of data with relative ease.
Bioinformaticians write the programs that
facilitate the production and use of this
data. It is possible get by using the many
excellent bioinformatics tools, such as Blast,
without having to learn to program. But
researchers may find themselves performing
a repetitive task, or scanning through large
amounts of output by eye for a particular
pattern. A little programming knowledge
can be very useful in automating these tasks.

Programming can seem an arcane activity
to biologists. The field abounds with jargon;
the computing shelves of book shops display a
bewildering array of choices; and computer
professionals have very strongly held but con-
tradictory opinions about which language
would be the best to learn. So where to start? I
think (speaking as a computing professional
with strongly held opinions) Beginning Perl
for Bioinformatics by James Tisdall would be a
great place. Aimed at biologists who are com-
plete novice programmers, he covers the fea-
tures of the Perl programming language that
will be of most use in helping solve biological
problems. The examples used contain code
that is actually useful. He shows how to
reverse-complement DNA, simulate random
mutations, find restriction enzyme–binding
sites, translate RNA to protein, and parse data
out of GenBank, PDB, and Blast reports. This
is a refreshing change from computer lan-
guage references where the practical examples
are invariably personnel records!

Perl is a language that is particularly suited
to bioinformatics. It began as a tool for text
manipulation and report generation. It grew
to include facilities for dealing with data
stored in databases, vital for the vast data sets
we have today. It has some of the best tools for
communicating over the Internet, presenting
graphical views of data, and is great for gluing
lots of uncooperative programs and databases
together to produce automated systems. In
addition, Perl is free, open-source software.
You can write code and distribute it without
fear that you will run into problems caused by

a restrictive software license.
As the author says, “Perl has a long and low

learning curve”. It is low because using Perl it
is easy to produce little programs that do use-
ful work early on in the learning process. One
of the first things I ever needed to program,
back in the days when I still occasionally
wielded a pipette, was to reverse-complement
a large (more than 80 kbp) BAC of mouse
genomic sequence that The Sanger Centre
had sequenced for us. The DNA analysis pro-
gram on our Macintosh was unable to cope
with anything longer than 64 kbp, so I wrote a
Perl script on the University UNIX machine
we used for our email. An example of how to
do this is one of the early ones in the book.
The learning curve is long, too. Despite my
five years experience with the language, I still
picked up a couple of tricks from this book.

Tisdall takes time to explain how to go
about writing software, how to think about
the design of your program, and then imple-
menting it. This is a nice ingredient that is
missing from many instruction books. His
teaching experience is evident from the traps
for the novice programmer that he highlights.
Perl syntax is particularly flexible—a Perl
motto is “There’s more than one way to do it”.
This can make Perl code confusing for the
novice, but he has been careful to use consis-
tent idioms throughout the book. Optional
features of the language (such as warnings and
the “strict” pragma) that trap a lot of comm-
mon Perl programming errors are empha-
sized. Such advice would certainly have saved
me a lot of wasted time when I was learning
the language.

O’Reilly continues to publish the definitive
guides to this programming language. And
they produce some of the most readable and
witty computing texts. The example code they
contain is carefully checked for errors, which
are particularly frustrating in computing
books. The covers of most of their books
feature a distinctive woodcut of an animal;
in this case three frog tadpoles. If you begin
reading as a programming “egg”, and work
your way carefully through the exercises,
then the tadpole will be a good representa-
tion of your stage of development by the
end. There is plenty more to learn about Perl,
some of which is touched on in the last chap-
ter. Object-oriented programming techniques
are not taught, which are needed for using
most of the publicly available Perl libraries. I
imagine that part of the problem of writing an
introductory book like this was deciding what
to leave out.

221

How to become a programming tadpole
James G.R. Gilbert

James G.R. Gilbert is at the Wellcome Trust
Sanger Institute, Hinxton, Cambridge CB10
1SA, UK (jgrg@sanger.ac.uk).

©
20

02
 N

at
u

re
 P

u
b

lis
h

in
g

 G
ro

u
p

h

tt
p

:/
/b

io
te

ch
.n

at
u

re
.c

o
m

	How to become a programming tadpole

