Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Fingerprinting polysaccharides with single-molecule atomic force microscopy

Abstract

We report the use of an atomic force microscopy (AFM)-based force spectroscopy technique to identify, at the single-molecule level, the components of mixtures of polysaccharides. Previously, we showed that the elasticity of certain types of polysaccharides is governed by force-induced conformational transitions of the pyranose ring. These transitions produce atomic fingerprints in the force–extension spectrum that are characteristic of the ground-energy conformation of the pyranose ring and the type of glycosidic linkages. Using this approach we find that commercially available agarose and λ-carrageenan contain molecules that, when stretched in an atomic force microscope, produce a force spectrum characteristic of α-(1→4) d-glucans. We have identified these molecules as amylopectin or floridean starch, a storage polysaccharide in algae. Our methodology can identify individual polysaccharide molecules in solution, which is not possible by any other spectroscopic technique, and therefore is an important addition to the arsenal of analytical techniques used in carbohydrate research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fingerprints of elasticity of linear polysaccharides obtained by AFM.
Figure 2: AFM force spectra obtained on amylose (A, B) and methylcellulose (C, D).
Figure 3: Force spectra obtained from native agarose and λ-carrageenan show multiple polysaccharide fingerprints.
Figure 4: Superposition of force spectra from the amylose-like fraction of agarose (blue, n = 7), the amylose-like fraction of λ-carrageenan (red, n = 5), and from molecules with the amylose-like backbone linkages (amylose, CMA, amylopectin; yellow, n = 3).

Similar content being viewed by others

References

  1. Rao, V.S.R., Qasba, P.K., Balaji & Chandrasekaran, R., Conformation of carbohydrates. (Harwood Academic Publishers, Amsterdam; 1998).

    Google Scholar 

  2. Jol, C.N., Neiss, T.G., Penninkhof, B., Rudolph, B. & De Ruiter, G.A. A novel high-performance anion-exchange chromatographic method for the analysis of carrageenans and agars containing 3,6-Anhydrogalactose. Anal. Biochem. 268, 213–222 (1999).

    Article  CAS  Google Scholar 

  3. Flory, P.J. Principles of polymer chemistry. (Cornell University Press, Ithaca, NY; 1953).

    Google Scholar 

  4. Smith, S.B., Finzi, L. & Bustamante, C. Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads. Science 258, 1122–1126 (1992).

    Article  CAS  Google Scholar 

  5. Smith, S.B., Cui, Y. & Bustamante, C. Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules. Science 271, 795–799 (1996).

    Article  CAS  Google Scholar 

  6. Flory, P.J. Statistical mechanics of chain molecules. (Hanser Publishers, Munich; 1988).

    Google Scholar 

  7. Bustamante, C., Marko, J.F., Siggia, E.D. & Smith, S. Entropic elasticity of lambda-phage DNA. Science 265, 1599–1600 (1994).

    Article  CAS  Google Scholar 

  8. Fisher, T.E., Marszalek, P.E., Oberhauser, A.F., Carrion-Vazquez, M. & Fernandez, J.M. The micro-mechanics of single molecules studied with atomic force microscopy. J. Physiol. 520.1, 5–14 (1999).

    Article  Google Scholar 

  9. Fisher, T.E., Oberhauser, A.F., Carrion-Vazquez, M., Marszalek, P.E. & Fernandez, J.M. The study of protein mechanics with the atomic force microscope. Trends Biochem. Sci. 24, 379–384 (1999).

    Article  CAS  Google Scholar 

  10. Fisher, T.E. et al. Single molecule force spectroscopy of modular proteins in the nervous system. Neuron 27, 435–446 (2000).

    Article  CAS  Google Scholar 

  11. Fisher, T.E., Marszalek, P.E. & Fernandez, J.M. Stretching single molecules into novel conformations using the atomic force microscope. Nature Struct. Biol. 7, 719–724 (2000).

    Article  CAS  Google Scholar 

  12. Cluzel, A. et al. DNA: an extensible molecule. Science 271, 792–794 (1996).

    Article  CAS  Google Scholar 

  13. Rief, M., Oesterhelt, F., Heymann, B., & Gaub, H.E. Single molecule force spectroscopy on polysaccharides by atomic force microscopy. Science 275, 1295–1297 (1997).

    Article  CAS  Google Scholar 

  14. Rief, M., Fernandez, J.M. & Gaub, H.E. Elastically coupled two-level system as a model for bioplymer extensibility. Phys. Rev. Lett. 81, 4764–4767 (1998).

    Article  CAS  Google Scholar 

  15. Rief, M., Gautel, M., Oesterhelt, F., Fernandez, J.M. & Gaub, H.E. Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276, 1109–1112 (1997).

    Article  CAS  Google Scholar 

  16. Oberhauser, A.F., Marszalek, P.E., Erickson, H.P. & Fernandez, J.M. The molecular elasticity of the extracellular matrix protein tenascin. Nature 393, 181–185 (1998).

    Article  CAS  Google Scholar 

  17. Li, H., Rief, M., Oesterhelt, F. & Gaub, H.E. Single-molecular force spectroscopy on Xanthan by AFM. Adv. Mater. 3, 316–319 (1998).

    Article  Google Scholar 

  18. Marszalek, P.E., Oberhauser, A.F., Pang, Y.P. & Fernandez, J.M. Polysaccharide elasticity governed by chair-boat transitions of the glucopyranose ring. Nature 396, 661–664 (1998).

    Article  CAS  Google Scholar 

  19. Marszalek, P.E. et al. Atomic levers control pyranose ring conformations. Proc. Natl. Acad. Sci. USA 96, 7894–7898 (1999).

    Article  CAS  Google Scholar 

  20. Li, H. et al. Single-molecule force spectroscopy on polysaccharides by AFM-nanomechanical fingerprint of α-(1,4)-linked polysaccharides. Chem. Phys. Lett. 305, 197–201 (1999).

    Article  CAS  Google Scholar 

  21. Whistler, R.L. & BeMiller, J.N. Industrial gums. Polysaccharides and their derivatives. (Academic Press, San Diego, CA; 1993).

    Google Scholar 

  22. Turquois, T., Taravel, F.R. & Rochas, C. Synergy of the agarose-carob galactomannan blend inferred from NMR and rheological studies. Carbohydr. Res. 238, 27–38 (1993).

    Article  CAS  Google Scholar 

  23. Kennedy, J.F. & White, C.A. Polysaccharides. In Comprehensive organic chemistry, Vol. 5 (eds Barton, D.H.R. & Ollis, W.D.) 755–815 (Pergamon Press, Oxford, New York, NY; 1979).

    Google Scholar 

  24. Ozaki, H., Maeda, M. & Nisizawa, K. Floridean starch of a calcareous red alga, Joculator maximus. J. Biochem. 61, 497–503 (1967).

    Article  CAS  Google Scholar 

  25. Fornet, I., Zinoun, M., Deslandes, E., Diouris, M. & Floc'h, J.Y. Floridean starch and carrageenan contents as responses of the red alga Solieria chordalis to culture conditions. Eur. J. Phycology 34, 125–130 (1999).

    Article  Google Scholar 

  26. Zinoun, M. & Cosson, J. Seasonal variation in growth and carrageenan content of Calliblepharis jubata (Rhodophyceae, Gigartinales) from the Normandy coast, France. J. Appl. Phycology 8, 29–34 (1996).

    Article  Google Scholar 

  27. Rincones, R.E., Yu, S. & Pedersen, M. Effect of dark treatment on the starch degradation and the agar quality of cultivated Gracilariopsis-Lemaneiformis (Rhodophyta, Gracilariales) from Venezuela. Hydrobiologia 261, 633–640 (1993).

    Article  Google Scholar 

  28. Sekkal, M. et al. Direct structural identification of polysaccharides from red algae by FTIR microspectrometry. 1. Localization of agar in Gracilaria-Verrucosa sections. Mikrochimica Acta 112, 1–10 (1993).

    Article  CAS  Google Scholar 

  29. Chandrasekaran, R. Molecular architecture of polysaccharide helices in oriented fibers. Adv. Carbohydr. Chem. Biochem. 52, 311–405 (1997).

    Article  CAS  Google Scholar 

  30. Brant, D.A. Novel approaches to the analysis of polysaccharide structures. Curr. Opin. Struct. Biol. 9, 556–562 (1999).

    Article  CAS  Google Scholar 

  31. O'Donoghue, P. & Luthey-Schulten, Z.A. Barriers to forced transitions in polysaccharides. J. Phys. Chem. B, 104, 10398–10405 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by grants from the National Science Foundation and the National Institutes of Health to P.E.M., J.M.F., and Andres F. Oberhauser.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Piotr E. Marszalek or Julio M. Fernandez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marszalek, P., Li, H. & Fernandez, J. Fingerprinting polysaccharides with single-molecule atomic force microscopy. Nat Biotechnol 19, 258–262 (2001). https://doi.org/10.1038/85712

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/85712

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing