Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Myoseverin, a microtubule-binding molecule with novel cellular effects

Abstract

A new microtubule-binding molecule, myoseverin, was identified from a library of 2,6,9-trisubstituted purines in a morphological differentiation screen. Myoseverin induces the reversible fission of multinucleated myotubes into mononucleated fragments. Myotube fission promotes DNA synthesis and cell proliferation after removal of the compound and transfer of the cells to fresh growth medium. Transcriptional profiling and biochemical analysis indicate that myoseverin alone does not reverse the biochemical differentiation process. Instead, myoseverin affects the expression of a variety of growth factor, immunomodulatory, extracellular matrix-remodeling, and stress response genes, consistent with the activation of pathways involved in wound healing and tissue regeneration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Myoseverin induces myotube fission.
Figure 2: Myoseverin disrupts the structure of the microtubule cytoskeleton.
Figure 3: (A) Biotinylated myoseverin affinity label.
Figure 4: Myoseverin facilitates cell cycle re-entry.

Similar content being viewed by others

References

  1. Black, B.L. & Olson, E.N. Transcriptional control of muscle development by myocyte enhancer factor-2 (MEF2) proteins. Annu. Rev. Cell Dev. Biol. 14, 167–196 (1998).

    Article  CAS  Google Scholar 

  2. Shimokawa, T., Kato, M., Ezaki, O. & Hashimoto, S. Transcriptional regulation of muscle-specific genes during myoblast differentiation. Biochem. Biophys. Res. Commun. 246, 287– 292 (1998).

    Article  CAS  Google Scholar 

  3. Guo, K. & Walsh, K. Inhibition of myogenesis by multiple cyclin–Cdk complexes. Coordinate regulation of myogenesis and cell cycle activity at the level of E2F. J. Biol. Chem. 272, 791–797 (1997).

    Article  CAS  Google Scholar 

  4. Walsh, K. & Perlman, H. Cell cycle exit upon myogenic differentiation . Curr. Opin. Genet. Dev. 7, 597– 602 (1997).

    Article  CAS  Google Scholar 

  5. Brockes, J.P. Amphibian limb regeneration: rebuilding a complex structure. Science 276, 81–87 ( 1997).

    Article  CAS  Google Scholar 

  6. Lo, D.C., Allen, F. & Brockes, J.P. Reversal of muscle differentiation during urodele limb regeneration. Proc. Natl. Acad. Sci. USA 90, 7230–7234 (1993).

    Article  CAS  Google Scholar 

  7. Dorfman, J. et al. Myocardial tissue engineering with autologous myoblast implantation J. Thoracic Cardiovasc. Surg. 116, 744– 751 (1998).

    Article  CAS  Google Scholar 

  8. Taylor, D.A. et al. Regenerating functional myocardium: improved performance after skeletal myoblast transplantation. Nat. Med. 8, 929–933 (1998).

    Article  Google Scholar 

  9. Chang, Y.-T. et al. Synthesis and application of functionally diverse 2,6,9-trisubstituted purine libraries as CDK inhibitors. Chem. Biol. 6, 361–357 (1999).

    Article  CAS  Google Scholar 

  10. Bains, W., Ponte, P., Blau, H. & Kedes, L. Cardiac actin is the major actin gene product in skeletal muscle cell differentiation in vitro . Mol. Cell Biol. 4, 1449– 1453 (1984).

    Article  CAS  Google Scholar 

  11. Rosania, G.R. & Swanson, J.A. Microtubules modulate pseudopod activity at-a-distance of the cell edge. Cell. Motil. Cytoskeleton 34, 230–245 ( 1996).

    Article  CAS  Google Scholar 

  12. Saitoh, O., Arai, T. & Obinata, T. Distribution of microtubules and other cytoskeletal filaments during myotube elongation as revealed by fluorescence microscopy. Cell Tiss. Res. 252, 263–273 (1988).

    Article  CAS  Google Scholar 

  13. Bischoff, R. & Holtzer, H. The effect of mitotic inhibitors on myogenesis in vitro. J. Cell Biol. 36, 111–127 (1968).

    Article  Google Scholar 

  14. Ohuchi, H. et al. An additional limb can be induced from the flank of the chick embryo by FGF4. Biochem. Biophys. Res. Commun. 209, 809–816 (1995).

    Article  CAS  Google Scholar 

  15. Iyer, V.R. et al. The transcriptional program in the response of human fibroblasts to serum. Science 283, 83– 87 (1999).

    Article  CAS  Google Scholar 

  16. Broxmeyer, J.E. et al. Effects of CC, CXC, C, and CX3C chemokines on proliferation of myeloid progenitor cells, and insights into SDF-1-induced chemotaxis of progenitors. Ann. NY Acad. Sci. 872, 142 –162 (1999).

    Article  CAS  Google Scholar 

  17. Haelens, A. et al. Leukocyte migration and activation of murine chemokines. Immunobiology 195, 499–521 (1996).

    Article  CAS  Google Scholar 

  18. Takekawa, M. & Saito, H. A family of stress-inducible GADD45-like proteins mediate activation of the stress responsive MTK1/MEKK4/MAPKKK. Cell 95, 521–530 ( 1998).

    Article  CAS  Google Scholar 

  19. Albano, R.M., Arkell, R., Beddington, R.S. & Smith, J.C. Expression of inhibin subunits and follistatin during postimplantation mouse development: decidual expression of activin and expression of follistatin in primitive streak, somites and hindbrain. Development 120, 803–813 (1994).

    CAS  PubMed  Google Scholar 

  20. Robson, L.G. & Hughes, S.M. The distal limb environment regulates MyoD accumulation and muscle differentiation is mouse–chick chimaeric limbs. Development 122, 3899– 3910 (1996).

    CAS  PubMed  Google Scholar 

  21. Itoh, N., Mima, T. & Mikawa, T. Loss of fibroblast growth factor receptor is necessary for terminal differentiation of embryonic limb muscle. Development 122, 291–300 ( 1996).

    CAS  PubMed  Google Scholar 

  22. Groskopf, J.C., Syu, L.J., Saltiel, A.R. & Linzer, D.I. Proliferin induces endothelial cell chemotaxis through a G protein-coupled, mitogen-activated protein kinase dependent pathway. Endocrinology 138 , 2835–2840 (1997).

    Article  CAS  Google Scholar 

  23. Tanaka, E.M. & Brockes, J.P. A target of thrombin activation promotes cell cycle re-entry by urodele muscle cells. Wound Repair Regen. 6, 301–391 ( 1998).

    Article  CAS  Google Scholar 

  24. Hung, D.T., Jamison, T.F. & Schreiber, S.L. Understanding and controlling the cell cycle with natural products. Chem. Biol. 3, 623– 639 (1996).

    Article  CAS  Google Scholar 

  25. Hansen, M.B., Nielsen, S.E. & Berg, K. Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. J. Immunol. Methods 119, 203–210 ( 1989).

    Article  CAS  Google Scholar 

  26. Belmont, L.D. & Mitchison, T.J. Identification of a protein that interacts with tubulin dimmers and increases the catastrophe rate of microtubules. Cell 84, 623– 631 (1996).

    Article  CAS  Google Scholar 

  27. Lockhart, D.J. et al. Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat. Biotechnol. 14, 1675– 1680 (1996).

    Article  CAS  Google Scholar 

  28. Wodicka, L., Dong, H., Mittmann, M., Ho, M.H. & Lockhart, D.J. Genome-wide expression monitoring in Saccharomyces cerevisiae. Nat. Biotechnol. 15, 1359 –1367 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter G. Schultz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosania, G., Chang, YT., Perez, O. et al. Myoseverin, a microtubule-binding molecule with novel cellular effects . Nat Biotechnol 18, 304–308 (2000). https://doi.org/10.1038/73753

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/73753

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing