Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Oxidative refolding chromatography: folding of the scorpion toxin Cn5

Abstract

We have made an immobilized and reusable molecular chaperone system for oxidative refolding chromatography. Its three components—GroEL minichaperone (191–345), which can prevent protein aggregation; DsbA, which catalyzes the shuffling and oxidative formation of disulfide bonds; and peptidyl–prolyl isomerase—were immobilized on an agarose gel. The gel was applied to the refolding of denatured and reduced scorpion toxin Cn5. The 66–residue toxin, which has four disulfide bridges and a cis peptidyl–proline bond, had not previously been refolded in reasonable yield. We recovered an 87% yield of protein with 100% biological activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Strategy for DsbA immobilization.
Figure 2: Overview of oxidative refolding chromatography.
Figure 3: Circular dichroism spectra of denatured and reduced Cn5 (––––) and refolded Cn5 (—).
Figure 4: Dose–response curve for native Cn5 toxin (open circles, see details under experimental protocol) and toxicity assay of refolded samples.

Similar content being viewed by others

References

  1. Ellis, J.R. 1996. Chaperonins: introductory perspective, pp. 1–20 in The chaperonins. Buetow, D.E., Cameron, L., Padilla, G. Zimmerman, A.M. (eds.). Academic Press, New York, NY.

    Google Scholar 

  2. Bulleid, N.J. 1993. Protein disulfide–isomerase: role in biosynthesis of secretory proteins, pp. 125–148 in Accessory proteins. Lorimer, G., Anfinsen, C., Edsall, J., Richards, F., Eisenberg, D. (eds.). Academic Press, New York, NY.

    Chapter  Google Scholar 

  3. Bardwell, J.J. 1993. The bonds that tie: catalysed disulfide bond formation. Cell 74:769–771.

    Article  CAS  Google Scholar 

  4. Thomas, J.G., Ayling, A., and Baneyx, F. 1997. Molecular chaperones, folding catalysts, and the recovery of active recombinant proteins from E. coli. Appl. Biochem. Biotechnol. 66:197–238.

    Article  CAS  Google Scholar 

  5. Hartl, F.U. 1996. Molecular chaperones in cellular protein folding. Nature 381:571–580.

    Article  CAS  Google Scholar 

  6. Xu, Z., Horwich, A.L., and Sigler, P.B. 1997. The crystal structure of the asymmetric GroEL–GroES–(ADP)7 chaperonine complex. Nature 388:741–750.

    Article  CAS  Google Scholar 

  7. Zahn, R., Buckle, A.M., Perrett, S., Johnson, C.M., Corrales, F.J., Golbik, R. et al. 1996. Chaperone activity and structure of monomeric polypeptide binding domains of GroEL. Proc. Natl. Acad. Sci. USA 93:15024–15029.

    Article  CAS  Google Scholar 

  8. Buckle, A.M., Zahn, R., and Fersht, A.R. 1997. A structural model for GroEL–polypeptide recognition. Proc. Natl. Acad. Sci. USA. 94:3571–3575.

    Article  CAS  Google Scholar 

  9. Golbik, R., Zahn, R., Harding, S.E., and Fersht, A.R. 1998. Thermodynamic stability and folding of GroEL minichaperones. J. Mol. Biol. 276:505–515.

    Article  CAS  Google Scholar 

  10. Chatellier, J., Hill, F., Lund, P.A., and Fersht, A.R. 1998. In vivo activities of GroEL minichaperones. Proc. Natl. Acad. Sci. USA 95:9861–9866.

    Article  CAS  Google Scholar 

  11. Altamirano, M.M., Golbik, R., Buckle, A.M., and Fersht, A.R. 1997. Refolding chromatography with immobilised mini–chaperones. Proc. Natl. Acad. Sci. USA 94:3576–3578 .

    Article  CAS  Google Scholar 

  12. Freedman, R.B. 1989. Protein disulfide isomerase: multiple roles in the modification of nascent secretory proteins. Cell 57:1069–1072.

    Article  CAS  Google Scholar 

  13. Bardwell, J.C.A., McGovern, K., and Beckwith, J. 1991. Identification of a protein required for disulfide bond formation in vivo. Cell 67:581–589.

    Article  CAS  Google Scholar 

  14. Missiakas, D., Georgopoulos, C., and Raina, S. 1994. The Escherichia coli dsbc (xprA) gene encodes a periplasmic protein involved in disulfide bond formation. EMBO J. 13:2013–2020.

    Article  CAS  Google Scholar 

  15. Lyles, M.M. and Gilbert., H.F. 1991. Catalysis of the oxidative folding of ribonuclease A by protein disulfide isomerase: dependence rate on the composition of the redox buffer. Biochemistry 30:613–619.

    Article  CAS  Google Scholar 

  16. Bader, M., Muse, W., Zander, T., and Bardwell, J.C.A. 1998. Reconstitution of a protein disulfide catalytic system. J. Biol. Chem. 273:10302–10307.

    Article  CAS  Google Scholar 

  17. Freedman, R.B. 1992. Protein folding in the cell, pp. 455–539 in Protein folding. Creighton, T.E. (ed.). Freeman, New York, NY.

    Google Scholar 

  18. Schmid, F.X., Mayr, L.M., Mücke, M., and Schönbrunner, R. 1993. Prolyl isomerase: role in protein folding, pp. 25–65 in Accessory proteins. Anfinsen, C., Edsall, J., Richards, F., Eisenberg, D. (eds.). Academic Press, New York, NY.

    Chapter  Google Scholar 

  19. Wunderlich, M., Otto, A., Seckler, R., and Glockshuber, R. 1993. Bacterial protein disulfide isomerase: efficient catalysis of oxidative protein folding at acid pH. Biochemistry 32:12251–12256.

    Article  CAS  Google Scholar 

  20. Martin, J.L., Bardwell, J.C.A., and Kuriyan, J. 1993. Crystal structure of the DsbA protein required for disulphide bond formation in vivo. Nature 365:464–468.

    Article  CAS  Google Scholar 

  21. Nelson, J.W. and Creighton, T.E. 1994. Reactivity and ionization of the active site cysteine residues of DsbA, a protein required for disulfide bond formation in vivo. Biochemistry 33:5974–5983.

    Article  CAS  Google Scholar 

  22. Zapun, A., Bardwell, J.C.A., and Creighton, T.E. 1993. The reactive and destabilizing disulfide bond of DsbA, a protein required for protein disulfide bond formation in vivo. Biochemistry 32:5083–5092.

    Article  CAS  Google Scholar 

  23. Darby, N. and Creighton, T.E. 1995. Catalytic mechanism of DsbA and its comparison with that of protein disulfide isomerase. Biochemistry 34:3576–3587.

    Article  CAS  Google Scholar 

  24. Wunderlich, M. and Glockshuber, R. 1993. Redox properties of protein disulfide isomerase (DsbA) from Escherichia coli. Protein Sci. 2:717–726.

    Article  CAS  Google Scholar 

  25. Akiyama, Y., Kamitani, S., Kusukawa, N., and Ito, K. 1992. In vitro catalysis of oxidative folding of disulfide–bonded proteins by the Escherichia coli dsbA gene product. J. Biol. Chem. 267:22440–22445.

    CAS  PubMed  Google Scholar 

  26. Joly, J.C. and Swartz, J.R. 1997. In vitro and in vivo redox states of the Escherichia coli periplasmic oxidoreductases DsbA and DsbC. Biochemistry 36:10067–10072.

    Article  CAS  Google Scholar 

  27. Zapun, A., Cooper, L., and Creighton, T.E. 1994. Replacement of the active–site residues of DsbA, a protein required for disulfide bond formation in vivo. Biochemistry 33:1907–1914.

    Article  CAS  Google Scholar 

  28. Matouschek, A., Rospert, S., Schmid, K., Glick, B.S., and Schatz, G. 1995. PPI catalyzes protein folding in yeast mitochondria. Proc. Natl. Acad. Sci. USA 92:6319–6323.

    Article  CAS  Google Scholar 

  29. Freedman, R.B. 1991. Protein disulfide isomerase, pp. 204–214 in Conformation and forces in protein folding. Nall. B.T and Dill, K.A. (eds.). American Association for the Advancement of Science, Washington, DC.

    Google Scholar 

  30. Rudolph, R. and Lilie, H. 1996. In vitro folding of inclusion body proteins. FASEB J. 10:49–56.

    Article  CAS  Google Scholar 

  31. De Bernandez Clark, E. 1998. Refolding of recombinant proteins. Curr. Opin. Biotechnol. 9:157–163.

    Article  Google Scholar 

  32. Creighton, T.E. 1985. Folding of protein adsorbed reversibly to ion–exchange resins, pp. 249–258 in UCLA symposia on molecular and cellular biology new series, Vol. 39. Oxender, D.L. (ed.). New York, NY.

    Google Scholar 

  33. Stempfer, G., Holl–Neugebauer, B., and Rudolph, R. 1996. Improved refolding of an immobilized fusion protein. Nat. Biotechnol. 14:329–334.

    Article  CAS  Google Scholar 

  34. Garcia, C., Becerril, B., Selisko, B., Delepierre, M., and Possani, L.D. 1997. Isolation, characterization and comparison of a novel crustacean toxin with a mammalian toxin from the venom of the scorpion Centruroides noxius Hoffmann. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 116:315–322 .

    Article  CAS  Google Scholar 

  35. Zilberberg, N.G.D., Pelhate, M., Adams, M., Norris, T., Zlotkin, E., and Gurevitz, M. 1996. Functional expression and genetic alteration of an alpha scorpion neurotoxin. Biochemistry 35:10215–10222.

    Article  CAS  Google Scholar 

  36. Florence, T.M., 1980. Degradation of protein disulphide bonds in dilute alkali. Biochem J. 189:507–520.

    Article  CAS  Google Scholar 

  37. Hennecke, J., Sillen, A., Huber–Wunderlich, M., Engelborghs, Y., and Glockshuber, R. 1997. Quenching of tryptophan fluorescence by the active–site disulfide bridge in the DsbA protein from Escherichia coli. Biochemistry 36:6391–6400.

    Article  CAS  Google Scholar 

  38. Holmgren, A. 1979. Thioredoxin catalyzes the reduction of insulin disulfides by dithiothreitol and dihydrolipoamide. J. Biol. Chem. 254:9627–9632.

    CAS  PubMed  Google Scholar 

  39. Loret, E.P., Martin–Euclaire, M., and Mansuelle, P. 1991. An anti–insect toxin purified from the scorpion Androctonus australis Hector also acts on the α– and β–sites of the mammalian sodium channel: sequence and circular dichroism study. Biochemistry 30:633–640.

    Article  CAS  Google Scholar 

  40. Morjana, N.A. and Gilbert., H.F., 1994. Catalysis of protein folding by agarose–immobilized protein disulfide isomerase. Protein Expr. Purif. 5:144–148.

    Article  CAS  Google Scholar 

  41. Muronetz, V.I., Zhang, N.X., Bulatnikov, I., and Wang, C.C. 1998. Study on the interactions between protein disulfide isomerase and target proteins, using immobilization on solid support. FEBS Lett. 426:107–110.

    Article  CAS  Google Scholar 

  42. Buchner, J. and Rudolph, R. 1991. Renaturation, purification and characterization of recombinant Fab fragments produced in Escherichia coli. Bio/Technology 9:157–162.

    CAS  PubMed  Google Scholar 

  43. Buchner, J., Brinkmann, U., and Pastan, I. 1992. Renaturation of a single–chain immunotoxin facilitated by chaperones and protein disulfide isomerase. Bio/Technology 10:682–685.

    CAS  PubMed  Google Scholar 

  44. Sabatier, J.M., Darbon, H., Fourquet, P., Rochat, H., and Rietschoten, J. 1987. Reduction and reoxidation of the neurotoxin II from the scorpion Androctonus australis Hector. Int. J. Pept. Protein Res 30:125–134.

    Article  CAS  Google Scholar 

  45. Jasanoff, A., Davis, B., and Fersht A.R. 1994. Detection of an intermediate in the folding of the (ba) 8–barrel N–(5´–phosphoribosyl)anthranilate isomerase from Escherichia coli. Biochemistry 33:6350–6355.

    Article  CAS  Google Scholar 

  46. Miroux, B. and Walker., J.E. 1996. Over–production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J. Mol. Biol. 260:289–298.

    Article  CAS  Google Scholar 

  47. Altamirano, M.M., Lara–Lemus, G., Libreros, C., and Calcagno, M. 1989. Evidence for vicinal dithiols and their functional role in glucosamine–6–phosphate deaminase from Escherichia coli. Arch. Biochem. Biophys. 269:555–561.

    Article  CAS  Google Scholar 

  48. Altamirano M.M., Plumbridge, J.A., and Calcagno, M.L. 1992. Identification of two cysteine residues forming a pair of vicinal thiols in glucosamine–6–phosphate deaminase from Escherichia coli and a study of their functional role by site–directed mutagenesis. Biochemistry 31:1153–1158.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

M.M.A. was an EMBO fellow. This research was partially supported by a Howard Hughes Medical Institute grant (to L.D.P.). Fruitful discussions with Gilles Travé are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan R. Fersht.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Altamirano, M., García, C., Possani, L. et al. Oxidative refolding chromatography: folding of the scorpion toxin Cn5. Nat Biotechnol 17, 187–191 (1999). https://doi.org/10.1038/6192

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/6192

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing