Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Targeted adeno-associated virus vector transduction of nonpermissive cells mediated by a bispecific F(ab'γ)2 antibody

Abstract

We have developed a system for the targeted delivery of adeno–associated virus (AAV) vectors. Targeting is achieved via a bispecific F(ab´)2 antibody that mediates a novel interaction between the AAV vector and a specific cell surface receptor expressed on human megakaryocytes. Targeted AAV vectors were able to transduce megakaryocyte cell lines, DAMI and MO7e, which were nonpermissive for normal AAV infection, 70–fold above background and at levels equivalent to permissive K562 cells. Transduction was shown to occur through the specific interaction of the AAV vector–bispecific F(ab´)2 complex and cell–associated targeting receptor. Importantly, targeting appeared both selective and restrictive as the endogenous tropism of the AAV vector was significantly reduced. Binding and internalization through the alternative receptor did not alter subsequent steps (escape from endosomes, migration to nucleus, or uncoating) required to successfully transduce target cells. These results demonstrate that AAV vectors can be targeted to a specific cell population and that transduction can be achieved by circumventing the normal virus receptor.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Quantification of β–galactosidase expression in cell lines transduced with recombinant AAVβgal vector.
Figure 2: AAV binding to different cells.
Figure 3: Fluorescence–activated cell sorting (FACS) analysis of αIIbβ3 integrin expression.
Figure 4: Targeted transduction of cells mediated by bispecific antibody.
Figure 5: Binding of radiolabeled AAV to human megakaryocytic leukemia cell lines in the presence of bispecific F(ab´γ)2.
Figure 6: AAV infection of megakaryocyte cells mediated by bispecific antibody.

Similar content being viewed by others

References

  1. Samulski, R.J. 1993.Adeno–associated virus: integration at a specific chromosomal locus. Curr. Opin. Genet. Dev. 3:74–80.

    Article  CAS  PubMed  Google Scholar 

  2. Xiao, X., Li, J., and Samulski, R.J. 1996.Efficient long–term gene transfer into muscle tissue of immunocompetent mice by adeno–associated virus vector. J. Virol. 70:8098–8108.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Flotte, T.R., Afione, S.A., and Zeitlin, P.L. 1994.Adeno–associated virus vector gene expression occurs in nondividing cells in the absence of vector DNA integration. Am. J. Respir. Cell Mol. Biol. 11:517–521.

    Article  CAS  PubMed  Google Scholar 

  4. Kaplitt, M.G., Leone, P., Samulski, R.J., Xiao, X., Pfaff, D.W., O'Malley, K.L. et al. 1994.Long–term expression and phenotypic correction using adeno–associated virus vectors in the mammalian brain. Nat. Genet. 8:148–154.

    Article  CAS  PubMed  Google Scholar 

  5. McCown, T.J., Xiao, X., Li, J., Breese, G.R., and Samulski, R.J. 1996.Differential and persistent expression patterns of CNS gene transfer by an adeno–associated virus (AAV) vector. Brain Res. 713:99–107.

    Article  CAS  PubMed  Google Scholar 

  6. Russell, D.W., Miller, A.D., and Alexander, I.E. 1994.Adeno–associated virus vectors preferentially transduce cells in S phase. Proc. Natl. Acad. Sci. USA 91:8915–8919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Flotte, T.R., Afione, S.A., Conrad, C., McGrath, S.A., Solow, R., Oka, H. et al. 1993.Stable in vivo expression of the cystic fibrosis transmembrane regulator with an adeno–associated virus vector. Proc. Natl. Acad. Sci. USA 90:10613–10617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Conrad, C.K., Allen, S.S., Afione, S.A., Reynolds, T.C., Beck, S.E., Fee–Maki, M. et al. 1996.Safety of single–dose administration of an adeno–associated virus (AAV)–CFTR vector in the primate lung. Gene Ther. 3:658–668.

    CAS  PubMed  Google Scholar 

  9. Miller, J.L., Donahue, R.E., Sellers, S.E., Samulski, R.J., Young, N.S., and Nienhuis, A.W. 1994.Recombinant adeno–associated virus (rAAV)–mediated expression of a human g–globin gene in human progenitor–derived erythroid cells. Proc. Natl. Acad. Sci. USA 91:10183–10187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Walsh, C.E., Nienhuis, A.W., Samulski, R.J., Brown, M.G., Miller, J.L., Young, N.S. et al. 1994.Phenotypic correction of Fanconi anemia in human hematopoietic cells with a recombinant adeno–associated virus vector. J. Clin. Invest. 94:1440–1448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kessler, P.D., Podsakoff, G.M., Chen, X., McQuiston, S.A., Colosi, P.C., Matelis, L.A. et al. 1996.Gene delivery to skeletal muscle results in sustained expression and systemic delivery of a therapeutic protein. Proc. Natl. Acad. Sci. USA 93:14082–14087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kumar, S. and Leffak, M. 1991.Conserved chromatin structure in c–myc 5´ flanking DNA after viral transduction. J. Mol. Biol. 222:45–57.

    Article  CAS  PubMed  Google Scholar 

  13. Walsh, C.E., Liu, J.M., Xiao, X., Young, N.S., Nienhuis, A.W., and Samulski, R.J. 1992.Regulated high level expression of a human g–globin gene introduced into erythroid cells by an adeno–associated virus vector. Proc. Natl. Acad. Sci. USA 89:7257–7261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chu, T.H., Martinez, I., Sheay, W.C., and Dornburg, R. 1994.Cell targeting with retroviral vector particles containing antibody–envelope fusion proteins. Gene Ther. 1:292–299.

    CAS  PubMed  Google Scholar 

  15. Kasahara, N., Dozy, A.M., and Kan, Y.W. 1994.Tissue–specific targeting of retroviral vectors through ligand–receptor interactions. Science 266:1373–1376.

    Article  CAS  PubMed  Google Scholar 

  16. Russell, S.J., Hawkins, R.E., and Winter, G. 1993.Retroviral vectors displaying functional antibody fragments. Nucleic Acids Res. 21:1081–1085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Somia, N.V., Zoppe, M., and Verma, I.M. 1995.Generation of targeted retroviral vectors by using single–chain variable fragment: an approach to in vivo gene delivery. Proc. Natl. Acad. Sci. USA 92:7570–7574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Goldman, C.K., Rogers, B.E., Douglas, J.T., Sosnowski, B.A., Ying, W., Siegal, G.P. et al. 1997.Targeted gene delivery to Kaposi's sarcoma cells via the fibroblast growth factor receptor. Cancer Res. 57:1447–1451.

    CAS  PubMed  Google Scholar 

  19. Wickham, T.J., Carrion, M.E., and Kovesdi, I. 1995.Targeting of adenovirus penton base to new receptors through replacement of its RGD motif with other receptor–specific peptide motifs. Gene Ther. 2:750–756.

    CAS  PubMed  Google Scholar 

  20. Wickham, T.J., Segal, D.M., Roelvink, P.W., Carrion, M.E., Lizonova, A., Lee, G.M. et al. 1996.Targeted adenovirus gene transfer to endothelial and smooth muscle cells by using bispecific antibodies. J. Virol. 70:6831–6838.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Bartlett, J.S., Samulski, R.J., and McCown, T.J. 1998.Selective and rapid uptake of adeno–associated virus type–2 (AAV–2) in brain. Hum. Gene Ther. 9:1181–1186.

    Article  CAS  PubMed  Google Scholar 

  22. Summerford, C. and Samulski, R.J. 1998.Membrane–associated heparan sulfate proteoglycan is a receptor for adeno–associated virus type 2 virions. J. Virol. 72:1438–1445.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Mizukami, H., Young, N.S., and Brown, K.E. 1996.Adeno–associated virus type 2 binds to a 150–kilodalton cell membrane glycoprotein. Virology 217:124–130.

    Article  CAS  PubMed  Google Scholar 

  24. Ponnazhagan, S., Wang, X.–S., Woody, M.J., Luo, F., Kang, L.Y., Nallari, M. et al. 1996.Differential expression in human cells from the p6 promoter of human parvovirus B19 following plasmid transfection and recombinant adeno–associated virus 2 (AAV) infection: human megakaryocytic leukaemia cells are non–permissive for AAV infection. J. Gen. Virol. 77:1111–1122.

    Article  CAS  PubMed  Google Scholar 

  25. Wistuba, A., Weger, S., Kern, A., and Kleinschmidt, J.A. 1995.Intermediates of adeno–associated virus type 2 assembly: Identification of soluble complexes containing Rep and Cap proteins. J. Virol. 69:5311–5319.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Ferrari, F.K., Samulski, T., Shenk, T., and Samulski, R.J. 1996.Second–strand synthesis is a rate–limiting step for efficient transduction by recombinant adeno–associated virus vectors. J. Virol. 70:3227–3234.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Alexander, I.E., Russell, D.W., and Miller, A.D. 1994.DNA–damaging agents greatly increase the transduction of nondividing cells by adeno–associated virus vectors. J. Virol. 68:8282–8287.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Russell, D.W., Miller, A.D., and Alexander, I.E. 1995.DNA synthesis and topoisomerase inhibitors increase transduction by adeno–associated virus vectors. Proc. Natl. Acad. Sci. USA 92:5719–5723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Montgomery, R.R., Kunicki, T.J., Taves, C., Corcoran, M., and Pidard, D.J. 1983.Diagnosis of Bernard–Soulier syndrome and Glanzmann thrombasthenia with a monoclonal assay of whole blood. J. Clin. Invest. 71:385–389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pidard, D., Montgomery, R.R., Bennett, J.S., and Kunicki, T.J. 1983.Interaction of AP–2, a monoclonal antibody specific for human platelet glycoprotein IIb–IIIa complex, with intact platelets. J. Biol. Chem. 258:12582–12586.

    CAS  PubMed  Google Scholar 

  31. Handagama, P., Scarborough, R.M., Shuman, M.A., and Bainton, D.F. 1993.Endocytosis of fibrinogen into megakaryocyte and platelet a–granules is mediated by αIIbβ3 (glycoprotein IIb–IIIa). Blood 82:135–138.

    CAS  PubMed  Google Scholar 

  32. Halbert, C.L., Alexander, I.A., Wolgamot, G.M., and Miller, A.D. 1995.Adeno–associated virus vectors transduce primary cells much less efficiently than immortilized cells. J. Virol. 69:1473–1479.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Ponnazhagan, S., Wang, X.S., Kang, L.Y., Woody, M.J., Nallari, M.L., Munshi, N.C. et al. 1994.Transduction of human hematopoietic cells by the adeno–associated virus 2 vectors is receptor–mediated. Blood 84:742a.

    Google Scholar 

  34. Malik, P., McQuiston, S.A., Yu, X.–J., Pepper, K.A., Krall, W.J., Podsakoff, G.M. et al. 1997.Recombinant adeno–associated virus mediates a high level of gene transfer but less efficient integration in the K562 human hematopoietic cell line. J. Virol. 71:1776–1783.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Teramoto, S., Bartlett, J.S., McCarty, D., Xiao, X., Samulski, R.J., and Boucher, R.C. 1998.Factors influencing adeno–associated virus–mediated gene transfer to human cystic fibrosis airway epithelial cells: a comparison with adenovirus vectors. J. Virol. 44:8904–8912.

    Google Scholar 

  36. Imai, K., Hareyama, M., Makiguchi, Y., Matsumoto, H., and Hinoda, Y. 1997.Monoclonal antibody–conjugated immunotherapy of cancer. Int. Rev. Immunol. 14:213–227.

    Article  CAS  PubMed  Google Scholar 

  37. Bodey, B., Siegel, S.E., and Kaiser, H.E. 1996.Human cancer detection and immunotherapy with conjugated and non–conjugated monoclonal antibodies. Anticancer Res. 16:661–674.

    CAS  PubMed  Google Scholar 

  38. Jones, N. and Shenk, T. 1979.Isolation of adenovirus type 5 host range deletion mutants defective for transformation of rat embryo cells. Cell 17:683–689.

    Article  CAS  PubMed  Google Scholar 

  39. Goodman, S., Xiao, X., Donahue, R.E., Moulton, A., Miller, J., Walsh, C. et al. 1994.Recombinant adeno–associated virus–mediated gene transfer into hematopoietic progenitor cells. Blood 84:1492–1500.

    CAS  PubMed  Google Scholar 

  40. Samulski, R.J., Srivastava, A., Berns, K.I., and Muzyczka, N. 1983.Rescue of adeno–associated virus from recombinant plasmids: gene correction within the terminal repeats of AAV. Cell 33:135–143.

    Article  CAS  PubMed  Google Scholar 

  41. Samulski, R.J., Chang, L.–S., and Shenk, T. 1987.A recombinant plasmid from which an infectious adeno–associated virus genome can be excised in vitro and its use to study viral replication. J. Virol. 61:3096–3101.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Bartlett, J.S., Xiao, X., and Samulski, R.J. 1996. Adeno–associated virus vectors for gene transfer, pp. 115–127, in Protocols for gene transfer in neuroscience: towards gene therapy of neurological disorders, Lowenstein, P.R. and Enquist, L.W. (eds.). John Wiley & Sons, Chichester, UK.

    Google Scholar 

  43. Samulski, R.J., Chang, L.–S., and Shenk, T. 1989.Helper–free stocks of recombinant adeno–associated viruses: normal integration does not require viral gene expression. J. Virol. 63:3822–3828.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Sanes, J.R., Rubenstein, J.L.R., and Nicolas, J.F. 1986.Use of a recombinant retrovirus to study post–implantation cell lineage in mouse embryos. EMBO J. 5:3133–3142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hirt, B. 1967.Selective extraction of polyoma DNA from infected mouse cells. J. Mol. Biol. 26:365–369.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Robert Montgomery of The Blood Center of Southeast Wisconsin for the AP–2 antibody; and are indebted to Rose Wilcher for exceptional technical assistance. This research was aided by NIH grants HL 51818 and HL 42384 to R.C.B., HL 533016 and HL 549638 to R.J.S.; and by CFF grants R026 to R.C.B. and MARZLU96PO to J.S.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey S. Bartlett.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bartlett, J., Kleinschmidt, J., Boucher, R. et al. Targeted adeno-associated virus vector transduction of nonpermissive cells mediated by a bispecific F(ab'γ)2 antibody. Nat Biotechnol 17, 181–186 (1999). https://doi.org/10.1038/6185

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/6185

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing