Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Review
  • Published:

Improving enzymes for cancer gene therapy

Abstract

New techniques now make it feasible to tailor enzymes for cancer gene therapy. Novel enzymes with desired properties can be created and selected from vast libraries of mutants containing random substitutions within catalytic domains. In this review, we first consider genes for the ablation of tumors, namely, genes that have been mutated (or potentially can be mutated) to afford enhanced activation of prodrugs and increased sensitization of tumors to specific chemotherapeutic agents. We then consider genes that have been mutated to provide better protection of normal host tissues, such as bone marrow, against the toxicity of specific chemotherapeutic agents. Expression of the mutant enzyme could render sensitive tissues, such as bone marrow, more resistant to specific cytotoxic agents.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Survival of alkyltransferase–deficient bacteria expressing wild–type or mutant 56–8 (Cys150→Tyr, Ser152→Arg, Ala154→Ser, Val155→Gly, Asn157→Thr, Val164→Met, Glu166→Gln, Ala170→Thr) AGT in the presence of MNNG ± BG (100 μM).

Similar content being viewed by others

References

  1. Skandalis, A., Encell L.P., and Loeb L.A. 1997. Creating novel enzymes by applied molecular evolution. Chem. Biol. 4:889–898.

    Article  CAS  Google Scholar 

  2. Loeb, L.A. 1991. Mutator phenotype may be required for multistage carcinogenesis. Cancer Res. 51:3075–3079.

    CAS  Google Scholar 

  3. Moolten, F.L. 1994. Drug sensitivity ("suicide") genes for selective cancer chemotherapy. Cancer Gene Ther. 1:279–287.

    CAS  PubMed  Google Scholar 

  4. Moolten, F.L., Wells, J.M., Heyman, R.A., and Evans, R.M. 1990. Lymphoma regression induced by gancyclovir in mice bearing a herpes thymidine kinase transgene. Hum. Gene Ther. 1:125–134.

    Article  CAS  Google Scholar 

  5. Dachs, G.U., Dougherty, G.J., Stratford, I.J., and Chaplin, D.J. 1997. Targeting gene therapy to cancer: a review. Oncol. Res. 9:313–325.

    CAS  PubMed  Google Scholar 

  6. Brenner, M.K. 1998. Gene transfer and the treatment of childhood cancer. Cancer Invest. 16:269–278.

    Article  CAS  Google Scholar 

  7. Rosenberg, S.A. 1993. Newer approaches to cancer treatment—gene therapy of cancer, pp. 2598–2613, in Cancer: principles and practice of oncology, 4th ed. DeVita, V.T., Jr., Hellman S., and Rosenberg S.A. (eds.). J.B. Lippincott, Philadelphia, PA.

    Google Scholar 

  8. Banerjee, D., Zhao, S.C., Li M.–X., Schweitzer, B.I., Mineishi, S., and Bertino, J.R. 1994. Gene therapy utilizing drug resistance genes: a review. Stem Cells 12:378–385.

    Article  CAS  Google Scholar 

  9. Rafferty, J.A., Hickson, I., Chinnasamy, N., Lashford, L.S., Margison, G.P., Dexter, T.M. et al. 1996. Chemoprotection of normal tissues by transfer of drug resistance genes. Cancer Metastasis Rev. 15:365–383.

    Article  CAS  Google Scholar 

  10. Elion, G.B. 1980. The chemotherapeutic exploitation of virus–specified enzymes. Adv. Enzyme. Regul. 18:53–66.

    Article  CAS  Google Scholar 

  11. Culver, K.W., Ram, Z., Walbridge, S., Ishii, H., Oldfield, E.H., and Blaese, R.M. 1992. In vivo gene transfer with retroviral vector–producer cells for treatment of experimental brain tumors. Science 256:1550–1552.

    Article  CAS  Google Scholar 

  12. Black, M.E. and Loeb, L.A. 1993. Identification of important residues within the putative nucleoside binding site of HSV–1 thymidine kinase by random sequence selection: analysis of selected mutants in vitro. Biochemistry 32:11618–11626.

    Article  CAS  Google Scholar 

  13. Black, M.E., Newcomb, T.G., Wilson, H.–M.P., and Loeb, L.A. 1996. Creation of drug–specific herpes simplex virus type 1 thymidine kinase mutants for gene therapy. Proc. Natl. Acad. Sci. USA 93:3525–3529.

    Article  CAS  Google Scholar 

  14. Pope, I.M., Poston, G.J., and Kinsella, A.R. 1997. The role of the bystander effect in suicide gene therapy. Eur. J. Cancer 33:1005–1016.

    Article  CAS  Google Scholar 

  15. Bi, W.L., Parysek, L.M., and Warnick, R. 1993. In vitro evidence that metabolic cooperation is responsible for the bystander effect observed with HSV tk retroviral gene therapy. Hum. Gene. Ther. 4:725–731.

    Article  CAS  Google Scholar 

  16. Maze, R., Carney, J.P., Kelley, M.R., Glassner, B.J., Williams, D.A., and Samson, L. 1996. Increasing DNA repair methyltransferase levels via bone marrow stem cell transduction rescues mice from the toxic effects of 1,3–bis(2–cloroethyl)–1–nitrosourea, a chemotherapeutic alkylating agent. Proc. Natl. Acad. Sci. USA 93:206–210.

    Article  CAS  Google Scholar 

  17. Mickisch, G.H., Licht, T., Merlino, G.T., Gottesman, M.M., and Pastan, I. 1991. Chemotherapy and chemosensitization of transgenic mice which express the human multidrug resistance gene in bone marrow: efficacy, potency, and toxicity. Cancer Res. 51:5417–5424.

    CAS  PubMed  Google Scholar 

  18. Pegg, A.E., Dolan, M.E., and Moschel, R.C. 1995. Structure, function and inhibition of O6–alkylguanine–DNA alkyltransferase. Prog. Nucleic Acid Res. 51:167–223.

    Article  CAS  Google Scholar 

  19. Christians, F.C. and Loeb, L.A. 1996. Novel human DNA alkyltransferases obtained by random substitution and genetic selection in bacteria. Proc. Natl. Acad. Sci. USA 93:6124–6128.

    Article  CAS  Google Scholar 

  20. Christians, F.C., Dawson B.J., Coates, M.M., and Loeb, L.A. 1997. Creation of human alkyltransferases resistant to O6–benzylguanine. Cancer Res. 57:2007–2012.

    CAS  PubMed  Google Scholar 

  21. Encell, L.P., Coates, M.M., and Loeb, L.A. 1998. Engineering human DNA alkyltranferases for gene therapy using random sequence mutagenesis. Cancer Res. 58:1013–1020.

    CAS  PubMed  Google Scholar 

  22. Xu–Welliver, M., Kanugula, S., and Pegg, A.E. 1998. Isolation of human O6–alkylguanine–DNA alkyltransferase mutants highly resistant to inactivation by O6–benzylguanine. Cancer Res. 58:1936–1945.

    PubMed  Google Scholar 

  23. Loktionova, N.A., Xu–Welliver, M., Crone, T., Kanugula, S., and Pegg, A.E. 1999. Mutant forms of O6–alkylguanine–DNA alkyltransfersae protect CHO cells from killing by BCNU plus O6–benzylguanine or O6–8–oxo–benzylguanine. Biochem. Pharmacol. In press.

  24. Davis, B.M., Reese, J.S., Koc, O.N., Lee, K., Schupp, J.E., and Gerson, S.L. 1997. Selection for G156A O6–methylguanine DNA methyltransferase gene–transduced hematopoietic progenitors and protection from lethality in mice treated with O6–benzylguanine and 1,3–bis(2–chloroethyl)–1–nitrosourea. Cancer Res. 57:5093–5099.

    CAS  PubMed  Google Scholar 

  25. Chinnasamy, N., Rafferty, J.A., Hickson, I., Lashford, L.S., Longhurst, S.J., Thatcher, N. et al. (1998) Chemoprotective gene transfer II: multilineage in vivo protection of haemopoiesis against the effects of an antitumour agent by expression of a mutant human O6–alkylguanine–DNA alkyltranferase. Gene Ther. 5:842–847.

    Article  CAS  Google Scholar 

  26. Rode, W., Scanlon, K.J., Moroson, B.A., and Bertino, J.R. 1980. Regulation of thymidylate synthetase in mouse leukemia cells (L1210). J. Biol. Chem. 255:1305–1311.

    CAS  PubMed  Google Scholar 

  27. Harrap, K.R., Jackman, A.L., Newell, D.R., Taylor, G.A., Hughes, L.A., and Calvert, A.H. 1989. Thymidylate synthase: a target for anti–cancer drug design. Adv. Enzyme Regul. 29:161–179.

    Article  CAS  Google Scholar 

  28. Santi, D.V. and Danenberg, P.V. 1984. Chemistry and biochemistry of folates, pp. 345–398, in Folates and pterins, Blakley, R.L. and Benkovic, S.J. (eds.). Wiley–Interscience, New York, NY.

    Google Scholar 

  29. Grem, J.L. 1990. Fluorinated pyrimidines, pp. 180–224, in Cancer chemotherapy: principles and practice, Chabner, B.A. and Collins, J.M. (eds.). J.B. Lippincott, Philadelphia, PA.

    Google Scholar 

  30. Barbour, K.W., Berger, S.H., and Berger, F.G. 1990. A single amino acid substitution defines a naturally occurring genetic variant of human thymidylate synthase. Mol. Pharmacol. 37:515–518.

    CAS  PubMed  Google Scholar 

  31. Tong, Y., Liu–Chen, X., Erickan–Abali, E.A., Capiaux, G.M., Zhao, S., Banerjee, D. et al. 1998. Isolation and characterization of Thymitaq (AG337) and 5–fluoro–2–deoxyuridylate–resistant mutants of human thymidylate synthase from ethyl methanesulfonate–exposed human sarcoma HT1080 cells. J. Biol. Chem. 273:11611–11618.

    Article  CAS  Google Scholar 

  32. Landis, D.M. and Loeb, L.A. 1998. Random sequence mutagenesis and resistance to 5–fluorouridine in human thymidylate synthases. J. Biol. Chem. 273:25809–25817.

    Article  CAS  Google Scholar 

  33. Tong, Y., Liu–Chen, X., Ercikan–Abali, E.A., Zhao, S., Banerjee, D., Maley F. et al. 1998. Probing the folate–binding site of human thymidylate synthase by site–directed mutagenesis. J. Biol. Chem. 273:31209–31214.

    Article  CAS  Google Scholar 

  34. Haber, D.A., Beverly, S.M., Kiely, M.L., and Schimke, R.T. 1981. Properties of an altered dihydrofolate reductase encoded by amplified genes in cultured mouse fibroblasts. J. Biol. Chem. 256:9501–9510.

    CAS  PubMed  Google Scholar 

  35. Srimatkandala, S., Schweitzer, B.I., Moroson, B.A., Dube, S., and Bertino, J.R. 1989. Amplification of a polymorphic dihydrofolate reductase gene expressing an enzyme with a decreased binding to MTX in a human colon carcinoma cell line HCT–8R4 resistant to this drug. J. Biol. Chem. 264:3524–3528.

    Google Scholar 

  36. McIvor, R.S. and Simonsen, C.C. 1990. Isolation and characterization of a variant dihydrofolate reductase cDNA from the methotrexate resistant murine L5178Y cells. Nucleic Acids Res. 18:7025–7032.

    Article  CAS  Google Scholar 

  37. Thillet, J., Absil, J., Stone, S.R., and Pictet, R. 1988. Site directed mutagenesis of mouse dihydrofolate reductase. J. Biol. Chem. 263:12500–12508.

    CAS  PubMed  Google Scholar 

  38. McIvor, R.S. 1996. Drug–resistant dihydrofolate reductases: generation, expression and therapeutic application. Bone Marrow Transplant. 18:S50–S54.

    PubMed  Google Scholar 

  39. Ercikan–Abali, E.A., Mineishi, S., Tong, Y., Nakahara, S., Waltham, M.C., Banerjee, D. et al. 1996. Active site–directed double mutants of dihydrofolate reductase. Cancer Res. 56:4142–4145.

    PubMed  Google Scholar 

  40. James, R.I., May, C., Vagt, M.D., Studebaker, R., and McIvor, R. 1997. Transgenic mice expressing the tyr22 variant of murine DHFR: protection of transgenic marrow transplant recipients from lethal doses of methotrexate. Exp. Hematol. 25:1286–1295.

    CAS  PubMed  Google Scholar 

  41. Williams, D.A., Hsieh, K., DeSilva, A., and Mulligan, R.C. 1987. Protection of bone marrow transplant recipients from lethal doses of methotrexate by the generation of methotrexate resistant bone marrow. J. Exp. Med. 166:210–218.

    Article  CAS  Google Scholar 

  42. Zhao, S., Li, M.–X., Banerjee, D., Schweitzer, B.I., Gilboa, E., and Bertino, J.R. 1994. Long term protection of recipient mice from lethal doses of methotrexate by marrow infected with a double copy vector retrovirus containing a mutant dihydrofolate reductase. Cancer Gene Ther. 1:27–33.

    CAS  PubMed  Google Scholar 

  43. Zhao, S.–C., Banerjee, D., Mineishi, S., and Bertino, J.R. 1997. Post–transplant methotrexate administration leads to improved curability of mice bearing a mammary tumor transplanted with marrow transduced with a mutant human dihydrofolate reductase cDNA. Hum. Gene Ther. 8:903–909.

    Article  CAS  Google Scholar 

  44. Spencer, H.T., Sleep, S.E.H., Rehg, J.E., Blakley, R.L., and Sorrentino, B.P. 1996. A gene therapy strategy for making bone marrow cells resistant to Trimetrexate. Blood 87:2579–2587.

    CAS  PubMed  Google Scholar 

  45. Mineishi, S., Nakahara, S., Takebe, N., Banerjee, D., Zhao, S., and Bertino, J.R. 1997. Co–expression of the herpes simplex virus thymidine kinase gene potentiates methotrexate resistance conferred by transfer of a mutated dihydrofolate reductase gene. Gene Ther. 4:570–576.

    Article  CAS  Google Scholar 

  46. Mineishi, S., Nakahara, S., Takebe, N., and Zhao, S. 1998. Purine Salvage rescue by xanthine–guanine phosphoribosyltransferase (XGPRT) potentiates methotrexate resistance conferred by transfer of a mutated dihydrofolate reductase gene. Cancer Gene Ther. 5:144–149.

    CAS  PubMed  Google Scholar 

  47. Gulick, A.M. and Fahl, W.E. 1995. Forced evolution of glutathione S–transferase to create a more efficient drug detoxification enzyme. Proc. Natl. Acad. Sci. USA 92:8140–8144.

    Article  CAS  Google Scholar 

  48. Horwitz, M.S. and Loeb, L.A. 1986. Promoters selected from random DNA sequences. Proc. Natl. Acad. Sci. USA 83:7405–7409.

    Article  CAS  Google Scholar 

  49. Sweasy, J.B. and Loeb, L.A. 1993. Detection and characterization of mammalian DNA polymerase β mutants by functional complementation in Escherichia coli. Proc. Natl. Acad. Sci. USA 90:4626–4630.

    Article  CAS  Google Scholar 

  50. Cadwell, R.C. and Joyce, G.F. 1994. Mutagenic PCR. PCR Meth. Appl., 3:S136–S140.

    Article  CAS  Google Scholar 

  51. Stemmer, W.P.C. 1994. Rapid evolution of a protein in vitro by DNA shuffling. Nature 370:389–391.

    Article  CAS  Google Scholar 

  52. Zhao, H. and Arnold, F.H. 1997. Functional and nonfunctional mutations distinguished by random recombination of homologous genes. Proc. Natl. Acad. Sci. USA 94:7997–8000.

    Article  CAS  Google Scholar 

  53. Guengerich, F.P. 1995. Human cytochrome P450 enzymes, pp. 473–535, in Cytochrome P450: structure, mechanism, and biochemistry, 2nd ed. Ortiz de Montellano, P.R. (ed.). Plenum Press, New York, NY.

    Chapter  Google Scholar 

  54. Kivisto, K.T., Kroemer, H.K., and Eichelbaum, M. 1995. The role of human cytochrome P450 enzymes in the metabolism of anticancer agents: implications for drug interactions. Br. J. Clin. Pharmacol. 40:523–530.

    Article  CAS  Google Scholar 

  55. LeBlanc, G.A. and Waxman, D.J. 1989. Interaction of anticancer drugs with hepatic monooxygenase enzymes. Drug Metab. Rev. 20:395–439.

    Article  CAS  Google Scholar 

  56. Chakravarti, D., Ibeanu, G.D., Tano, K., and Mitra S. 1991. Cloning and expression in Escherichia coli of a human cDNA encoding the DNA repair protein N–methylpurine–DNA glycosylase. J. Biol. Chem. 266:15710–15715.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the investigators who made unpublished data available for this review. We also thank Ann Blank for helpful comments, and the referee and editors for valuable suggestions for the revised manuscript. L.A.L. is supported by NIH grant CA78885. L.P.E. is supported by a postdoctoral training grant from NIEHS (T32 ES07032), and D.M.L is supported by a medical scientist training grant from NIH NIGMS (5 T32 07266).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence A. Loeb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Encell, L., Landis, D. & Loeb, L. Improving enzymes for cancer gene therapy. Nat Biotechnol 17, 143–147 (1999). https://doi.org/10.1038/6142

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/6142

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing