Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Design, synthesis, and application of a Protein A mimetic

Abstract

Low-molecular-weight synthetic molecules that mimic the activity of native biological macromolecules have therapeutic potential, utility in large-scale production of biopharmaceuticals, and the capacity to act as probes to study molecular recognition events. We have developed a nonpeptidyl mimic for Staphylococcus aureus Protein A (SpA). The specific recognition and complexation elements between the B domain (Fb) of SpA and the Fc fragment of IgG were identified from the x-ray crystallographic structure. Computer-aided molecular modeling was used to design a series of biomimetic molecules around the Phe132-Tyr133 dipeptide involved in its binding to IgG. One of the ligands binds IgG competitively with SpA in solution and when immobilized on agarose beads, with an affinity constant of 105-106 M−1. The immobilized artificial Protein A was used to purify IgG from human plasma and murine IgG from ascites fluid, and to remove bovine IgG from fetal calf serum.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Macarthur, M.W., Driscoll, P.C., and Thornton, J.M. 1994. NMR and crystallography—complementary approaches to structure determination. Trends Biotech. 12: 149–153.

    Article  CAS  Google Scholar 

  2. Taylor, W.R. 1994. Remotely related sequences and structures—analysis and predictive modeling. Trends Biotech. 12: 154–158.

    Article  CAS  Google Scholar 

  3. Bowen, J.R, Charifson, P.S., Fox, P.C., Kontoyianni, M., Miller, A.B., Schnur, D., et al. 1993. Computer-assisted molecular modeling—indispensable tools for molecular pharmacology. J. Clin. Pharmacol. 33: 1149–1164.

    Article  CAS  Google Scholar 

  4. Lu, B., Smyth, M.R., and Okennedy, R. 1996. Oriented immobilization of antibodies and its applications in immunoassays and immunosensors. Analyst 121:r29–r32.

    Article  Google Scholar 

  5. Oriuchi, N., Endo, K., Watanabe, N., Sugiyama, S., Asao, T., Takenoshita, S., et al. 1995. Semiquantitative spect tumor uptake of Tc-99m-labeled anti-CEA monoclonal-antibody in colorectal tumor. J. A/L/C/. Med. 36: 679–683.

    CAS  Google Scholar 

  6. Powell, M.C., Perkins, A.C., Pimm, M.V., Aljetaily, M., Wastie, M.L., Durrant, L., Baldwin, R.W., and Symonds, E.M. 1987. Diagnostic-imaging of gynecologic tumors with the monoclonal-antibody 791t/36. Am. J. Obstet. Gynecol. 157:28–34.

    Article  CAS  Google Scholar 

  7. Goeser, T. and Theilmann, L. 1994. Therapy of chronic viral-hepatitis. Int. J. Clin. Pharmacol. Ther. 32: 571–576.

    CAS  PubMed  Google Scholar 

  8. Spooner, R.A. and Lord, J.M. 1990. Immunotoxins—status and prospects. Trends Biotech. 8: 189–193.

    Article  CAS  Google Scholar 

  9. Yarmush, M.L., Weiss, A.M., Antonsen, K.P., Odde, D.J., and Yarmush, D.M. 1992. Immunoaffinity purification—basic principles and operational considerations. Biotech. Adv. 10: 413–446.

    Article  CAS  Google Scholar 

  10. Kohler, G. and Milstein, C. 1975. Continuous culture of fused cells secreting antibody of predefined specificity. Nature 256: 495–497.

    Article  CAS  Google Scholar 

  11. Lonberg, N., Taylor, D., Harding, F.A., Trounstine, M., Higgins, K.M., Schramm, S.R., et al. 1994. Antigen-specific human-antibodies from mice comprising 4 distinct genetic modifications. Nature 368: 856–859.

    Article  CAS  Google Scholar 

  12. Green, L.L., Hardy, M.C., Maynardcurrie, C.E., Tsuda, H., Louie, D.M., Mendez, M.J., et al. 1994. Antigen-specific human monoclonal-antibodies from mice engineered with human ig heavy and light-chain YACs. Nat. Genet. 7: 13–21.

    Article  CAS  Google Scholar 

  13. Sparrmann, M., Ottosson, T., Magnusson, B., and Nilsson, A. 1987. Affinity-chromatography purification using protein A immobilized to traditional matrices and to hplc matrices. Biol. Chem. Hoftpe-Seyler 368–776.

  14. Ohlson, S., Nilsson, R., Niss, U., Kjellberg, B.M., and Freiburghaus, C. 1988. A novel-approach to monoclonal-antibody separation using high-performance liquid affinity-chromatography (hplac) with selectispher-10 protein G. J. Immunol. Methods 114: 175–180.

    Article  CAS  Google Scholar 

  15. Fuglistaller, R 1989. Comparison of immunoglobulin binding-capacities and ligand leakage using 8 different protein-A affinity-chromatography matrices. J. Immunol. Methods 124: 171–177.

    Article  CAS  Google Scholar 

  16. Godfrey, M.A.J., Kwasowski, P., Clift, R., and Marks, V. 1993. Assessment of the suitability of commercially available spa affinity solid-phases for the purification of murine monoclonal-antibodies at process scale. J. Immunol. Methods 160: 97–105.

    Article  CAS  Google Scholar 

  17. Porath, J., Maisano, F., and Belew, M. 1985. Thiophilic adsorption—a new method for protein fractionation. FEBS lett. 185: 306–310.

    Article  CAS  Google Scholar 

  18. Porath, J. and Belew, M. 1987.Thiophilic interaction and the selective adsorption of proteins. Trends Biotech. 5: 225–229.

    Article  CAS  Google Scholar 

  19. Belew, M., Juntti, N., Larsson, A., and Porath, J. 1987. A one-step purification method for monoclonal-antibodies based on salt-promoted adsorption chromatog-raphy on a thiophilic adsorbent. J. Immunol. Methods 102: 173–182.

    Article  CAS  Google Scholar 

  20. Hutchens, T.W. and Porath, J. 1986. Thiophilic adsorption of immunoglobulins -analysis of conditions optimal for selective immobilization and purification. Anal. Biochem. 159: 217–226.

    Article  CAS  Google Scholar 

  21. Elkak, A. and Vijayalakshmi, M.A. 1991 .Study of the separation of mouse monoclonal-antibodies by pseudobioafflnity chromatography using matrix-linked histidine and histamine. J. Chromatogr.-Biomed. Appl. 570: 29–41.

    Article  CAS  Google Scholar 

  22. Elkak, A., Manjini, S., and Vijayalakshmi, M.A. 1992. Interaction of immunoglobulin G with immobilized histidine—mechanistic and kinetic aspects. J. Chromatogr. 604: 29–37.

    Article  CAS  Google Scholar 

  23. Ngo, T.T. and Khatter, N. 1990. Chemistry and preparation of affinity ligands useful in immunoglobulin isolation aind serum-protein separation. J. Chromatogr. 510: 281–291.

    Article  CAS  Google Scholar 

  24. Ngo, T.T. and Khatter, N. 1991. Rapid and simple isolation of multigram goat IgG from serum using Avid AL and radial flow column. Appl.Biochem. Biotech. 30: 111–119.

    Article  CAS  Google Scholar 

  25. Ngo, T.T. and Khatter, N. 1992. Avid AL, a synthetic ligand affinity gel mimicking immobilized bacterial antibody receptor for purification of immunoglobulin G. J. Chromatogr. 597: 101–109.

    Article  CAS  Google Scholar 

  26. Deisenhofer, J. 1981. Crystallofraphic refinement and atomic models of a human Fc fragment and its complex with fragment-b of protein-A from Staphylococcus-aureus at 2.9 Å and 2.8 Å resolution. Biochemistry 20: 2361–2370.

    Article  CAS  Google Scholar 

  27. Levitt, M. and Park, B.H. 1993. Water—now you see it, now you don't. Structure 1: 223–226.

    Article  CAS  Google Scholar 

  28. Langone, J.J. 1982. Protein-A of Staphylococcus-aureus and related immunoglobulin receptors produced by streptococci and pneumococci. Adv. Immunol. 32: 157–252.

    Article  CAS  Google Scholar 

  29. Stead, C.V. 1989. p. 21 in Promin-dye interactions: Developments and applications. Vijayalakshmi, MA. and Bertrand, O. (ed.), Elsevier Applied Science, London.

    Google Scholar 

  30. Heunhoeffer, H. 1978. pp. 1–371 in Chemistry of 1,2,3-triazines and 1,2,4-triazines, tetrazines pentazines. Heunhoeffer, H. and Paul, F. (eds.), John Wiley and Sons, New York.

    Book  Google Scholar 

  31. Cheng, Y. and Prusoff, W.H. 1973. Relationship between the inhibition constant (Kr) and the concentration of inhibitor which cause 50 per cent inhibition(I50) of an enzymatic reaction. Biochem. Phatmacol. 22: 3099–3108.

    Article  CAS  Google Scholar 

  32. Rodbard, D. and Leward, J.E. 1970. pp. 79–103 in Steroid assay by protein binding. Diczfausy, E. (ed.), Karolinska Institute, Stolkholm.

    Google Scholar 

  33. Hillson, J.L., Karr, N.S., Oppligdr, I.R., Mannik, M., and Sasso, H. 1993. The structural basis of germline-encoded VH3 immunoglobulin binding to staphylococcal protein A. J. Exp. Med. 178: 331–386.

    Article  CAS  Google Scholar 

  34. Ito, W., Nakamura, H. and Arate, Y. 1989. Protein-protein interactions on the surface of immunoglobulin molecules. J. Mol. Graph. 7: 60–63.

    Article  CAS  Google Scholar 

  35. Hjelm, H. 1975. Isolation of lgG3 from normal human sera and from a patient with multiple myeloma by using protein A-Sepharose 4B. Scand. J. Immunol. 4: 633–640.

    Article  CAS  Google Scholar 

  36. Kuntz, I.D. 1992. Structure-bated strategies for drug design and discovery. Science 257: 1078–1082.

    Article  CAS  Google Scholar 

  37. Arews, P. 1986. Functional-groups, drug receptor interactions and drug design. Trends Pharmacol. Sci. 7: 148–151.

    Article  Google Scholar 

  38. Fersht, A. 1977. p. 236 in Entyme structure and mechanism. Fersht, A. (ed.), W.H. Freeman and Company, Reading, UK.

  39. Nilsson, K. and Mosbach, K. 1980. p-Toluenesulfonyl chloride as an activating agent of agarose for preparation of immobilized affinity ligands and proteins. Eur. J. Biochem. 112: 397–402

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher R. Lowe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, R., Dowd, V., Stewart, D. et al. Design, synthesis, and application of a Protein A mimetic. Nat Biotechnol 16, 190–195 (1998). https://doi.org/10.1038/nbt0298-190

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0298-190

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing