Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Review
  • Published:

Transgenic plants: An emerging approach to pest control

Abstract

Insect pests are a major cause of damage to the world's commercially important agricultural crops. Current strategies aimed at reducing crop losses rely primarily on chemical pesticides. Alternatively transgenic crops with intrinsic pest resistance offer a promising alternative and continue to be developed. The first generation of insect-resistant transgenic plants are based on insecticidal proteins from Bacillus thuringiensis (Bt). A second generation of insect-resistant plants under development include both Bt and non-Bt proteins with novel modes of action and different spectra of activity against insect pests.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Oerke, E.G. 1994. Estimated crop losses due to pathogens, animal pests and weeds, pp. 72–88 in Crop production and crop protection: estimated losses in major food and cash crops. Oerke, E.G., Dehne, H.W., Schonbeck, R, and Weber, A. (eds.). Elsevier, Amsterdam.

    Google Scholar 

  2. Klee, H., Horsch, R. and Rogers, S. 1987. Agrobacterium-mediated plant transformation and its further applications to plant biology. Annu. Rev. Plant Physiol. 38: 467–486.

    Article  CAS  Google Scholar 

  3. Potrykus, I. 1991. Gene transfer to plants: Assessment of published approaches and results. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42: 205–225.

    Article  CAS  Google Scholar 

  4. Randolph-Anderson, B., Boynton, J.E., Dawson, J., Dunder, E., Eskes, R., Gillham, N.W., Johnson, A., Perlman, P.S., Suttie, J. and Heiser, W.C. 1995. Submicron gold particles are superior to larger particles for efficient biolistic transformation of organelles and some sell types. Bio-Rad US/EG Bulletin 2015.

  5. Koziel, M.G., Beland, G.L., Bowman, C., Carozzi, N.B., Crenshaw, R., Crossland, L., Dawson, J., Desai, N., Hill, M., Kadwell, S., Launis, K., Lewis, K., Maddox, D., McPherson, K., Meghji, M.R., Merlin, E., Rhodes, R., Warren, G.W., Wright, M. and Evola, S.V. 1993. Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis. Bio/Technology 11: 194–200.

    CAS  Google Scholar 

  6. Umbeck, P.F. 1992. Genetic engineering of cotton plants and lines. United States Patent 5, 159, 135.

  7. Koziel, M.G., Carozzi, N.B., Currier, T.C., Warren, G.W. and Evola, S.V. 1993. The insecticidal crystal proteins of Bacillus thuringiensis: past, present and future uses. Biotechnol. and Genet. Engineer. Rev. 11: 171–228.

    Article  CAS  Google Scholar 

  8. Koziel, M.G., Carozzi, N.B. and Desai, N. 1997. Optimizing expression of trans-genes with an emphasis on post-transcriptional events. Plant Mol. Biol., in press.

  9. Perlak, F.J., Fuchs, R.L., Dean, D.A., McPherson, S.L., and Fischhoff, D.A. 1991. Modification of the coding sequence enhances plant expression of insect control protein genes. Proc. Natl. Acad. Sci. USA 88: 3324–3328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gill, S.S., Cowles, E.A. and Pietrantonio, R.V. 1992. The mode of action of Bacillus thuringiensis endotoxins. Annu. Rev. Entomol. 37: 615–636.

    Article  CAS  PubMed  Google Scholar 

  11. World Wide Web address: www.susx.ac.uk/users/bafn6/bt/index.html

  12. Schnepf, H.E. and Whiteley, H.R. 1981. Cloning and expression of the Bacillus thuringiensis crystal protein gene in Escherichia coli. Proc. Natl. Acad. Sci. USA 78: 2893–2897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Vaeck, M., Reynaerts, A., Höfte, H., Jansens, S., De Beuckeleer, M., Dean, C., Zabeau, M., van Montagu, M. and Leemans, J. 1987. Transgenic plants protected from insect attack. Nature 327: 33–37.

    Article  Google Scholar 

  14. Fischhoff, D.A., Bowdish, K.S., Perlak, F.J., Marrone, P.G., McCormick, S.M., Niedermaeyer, J.G., Dean, D.A., Kusano-Kretzmer, K., Mayer, E.J., Rochester, D.E., Rogers, S.G. and Fraley, R.T. 1987. Insect tolerant transgenic tomato plants. Bio/Technology 5: 807–813.

    CAS  Google Scholar 

  15. Peferoen, M. 1992. Engineering of insect resistant plants with Bacillus thuringiensis crystal protein genes, pp. 135–153 in Biotechnology in agriculture. Gatehouse, A., Hilder, V., and Boulter, D. (eds.). CAB International, Wallingford.

    Google Scholar 

  16. Warren, G.W., Carozzi, N.B., Desai, N., and Koziel, M.G. 1992. Field evaluation of transgenic tobacco containing a Bacillus thuringiensis insecticidal protein gene. J. Econ. Entomol. 5: 1651–1659.

    Article  Google Scholar 

  17. Delannay, X., La Vallee, B.J., Proksch, R.K., Fuchs, R.L., Sims, S.R., Greenplate, J.T., Marrone, P.G., Dodson, R.B., Augustine, J.J., Layton, J.G. and Fischhoff, D.A. 1989. Field performance of transgenic tomato plants expressing the Bacillus thuringiensis var kurstaki insect control protein. Bio/Technology 7: 1265–1269.

    Google Scholar 

  18. Perlak, F.J., Deaton, R.W., Armstrong, T.A., Fuchs, R.L., Sims, S.R., Greenplate, J.T. and Fischhoff, D.A. 1990. Insect resistant cotton plants. Bio/Technology 8: 939–943.

    CAS  Google Scholar 

  19. Wilson, F.D., Flint, H.M., Deaton, R.W., Fischhoff, D.A., Perlak, F.J., Armstrong, T.A., Fuchs, R.L., Berberich, S.A., Parks, N.J. and Stapp, B.R. 1992. Resistance of cotton lines containing a Bacillus thuringiensis toxin to pink bollworm (Lepidoptera: Gelechiidae) and other insects. J. Econ. Entomol. 85: 1516–1521.

    Article  Google Scholar 

  20. Perlak, F.J., Stone, T.B., Muskopf, Y.M., Petersen, L.J., Parker, G.B., McPherson, S.A., Wyman, J., Love, S., Reed, G., Biever, D. and Fischhoff, D.A. 1993. Genetically improved potatoes: protection from damage by Colorado potato beetles. Plant Mol. Biol. 22: 313–321.

    Article  CAS  PubMed  Google Scholar 

  21. Adang, M.J., Brody, M.S., Cardineau, G., Eagan, N., Roush, R.T., Shewmaker, C.K., Jones, A., Oakes, J.V. and McBride, K.E. 1993. The reconstruction and expression of a Bacillus thuringiensis crylllA gene in protoplasts and potato plants. Plant Mol. Biol. 21: 1131–1145.

    Article  CAS  PubMed  Google Scholar 

  22. Moberg, W.K. 1990. Understanding and combating agrochemical resistance, pp. 3–16 in Managing Resistance to Agrochemicals. Green, M.B., LeBaron, H.M., and Moberg, W.K. (eds.). ACS Symposium Series, Washington.

    Google Scholar 

  23. Shelton, A.M., Robertson, J.L., Tang, J.D., Perez, C., Eigenbrode, S.D., Preisler, H.K., Wilsey, W.T. and Cooley, R.J. 1993. Resistance of the diamondback moth (Lepidoptera: Plutellidae) to Bacillus thuringiensis subespecies in the field. J. Econo. Entomol. 86: 697–705.

    Article  Google Scholar 

  24. Felton, G., Donato, K., Broadway, R. and Duffey, S. 1992. Impact of oxidized plant phenolics on the nutrional quality of dietary protein to a noctuid herbivore, Spodoptera exigua. J. Insect Physiol. 38: 277–285.

    Article  CAS  Google Scholar 

  25. Hilder, V., Gatehouse, A., Sheerman, S., Barker, R. and Boulter, D. 1987. A novel mechanism of insect resistance engineered into tobacco. Nature 330: 160–163.

    Article  CAS  Google Scholar 

  26. Huesing, J.E., Shade, R.E., Chrispeels, M.J. and Murdock, L.L. 1991. α-Amylase inhibitor, not phytohemagglutinin, explains the resistance of common bean seeds to cowpea weevil. Plant Physiol. 96: 993–996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ryan, C. 1990. Protease inhibitors in plants: genes for improving defenses against insects and pathogens. Ann. Rev. Phytopathol. 28: 425–449.

    Article  CAS  Google Scholar 

  28. Johnson, R., Narvaez, J., An, G. and Ryan, C. 1989. Expression of proteinase inhibitors I and II in transgenic tobacco plants: effects on natural defenses against Manduca sexta larvae. Proc. Natl. Acad. Sci. USA 86: 9871–9875.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jongsma, M.A., Bakker, P.L., Peters, J., Bosch, D. and Stiekema, W.J. 1995. Adaptation of Spodoptera exigua larvae to plant proteinase inhibitors by induction of gut proteinase activity insensitive to inhibition. Proc. Natl. Acad. Sci. USA 92: 8041–8045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ding, X. 1995. Manduca chitinase-mediated resistance to tobacco budworm (Heliothis virescens) and tobacco hornworm (Manduca sexta) larvae in transgenic tobacco plants. Ph.D. Dissertation, Kansas State University, Manhattan, pp. 73.

  31. Chapman, R.F. 1985. Structure of the digestive system, pp. 165–205 in Comprehensive insect physilogy, biochemistry and pharmacology. Kerkut, G.A. and Gilbert, L.I. (eds.). Pergamon Press, Oxford.

    Google Scholar 

  32. Chrispeels, M.J. and Raikhel, N.V. 1991. tins, lectin genes and their role in plant defense. The Plant Cell 3: 1–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cavalieri, A., Czapla, T., Howard, J. and Rao, G. 1995. Larvicidal lectins and plant insect resistance based thereof. United States Patent 5: 407–454.

    Google Scholar 

  34. Harper, S.M., Crenshaw, R.W., Mullins, M.A. and Privalle, L.S. 1995. Lectin binding to insect brush border membranes. J. Econ. Entomol. 88: 1197–1202.

    Article  CAS  Google Scholar 

  35. Czapla, T. and Lang, B.A. 1990. Effect of plant lectins on the larval development of European corn borer (Lepidoptera: Pyralidae) and southern corn rootworm (Coleoptera: Chrysomelidae). J. Econo. Entomol. 83: 2480–2485.

    Article  Google Scholar 

  36. Maddock, S.E., Hufman, G., Isenhour, D.J., Roth, B.A., Raikhel, N.V., Howard, J.A. and Czapla, T.H. 1991. Expression in maize plants of wheat germ agglutinin, a novel source of insect resistance. 3rd Int. Cong. Plant Mol. Biol., Tucson, Arizona.

  37. Boulter, D. 1993. Insect pest control by copying nature using genetically engineered crops. Phytochemistry 34: 1453–1466.

    Article  CAS  PubMed  Google Scholar 

  38. Shah, D.M., Rommens, C.M. and Beachy, R.N. 1995. Resistance to diseases and insects in transgenic plants: progress and applications to agriculture. Trends Biotechnol. 13: 362–368.

    Article  CAS  Google Scholar 

  39. Kanost, M. and Jiang, H. 1996. Proteinase inhibitors in invertebrate immunity, pp. 45–69 in New directions in invertebrate immunology. Soderhall, K., Iwanaga, S., and Vasta, G. (eds.). SOS Publications, New Jersey.

    Google Scholar 

  40. Luckmann, W.H. 1982. Integrating the cropping system for corn insect pest management, pp. 499–519 in Introduction to insect pest management. Metcalf, R.L. and Luckmann, W.H. (eds.). John Wiley & Sons, New York.

    Google Scholar 

  41. Metcalf, R.L. 1986. Forward, pp. vii–xv in Methods for the study of pest Diabrotica. Krysan, J.L. and Miller, T.A. (eds.). Springer-Verlag, New York.

    Google Scholar 

  42. Warren, G.W., Koziel, M.G., Mullins, M.A., Nye, G.J., Carr, B., Desai, N., Kostischka, K., Duck, N.B. and Estruch, J.J. 1996. Novel pesticidal proteins and strains. World Intellectual Property Organization WO 96/10083.

  43. Estruch, J.J., Warren, G.W., Mullins, M.A., Nye, G.J., Craig, J.A. and Koziel, M.G. 1996. Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects. Proc. Natl. Acad. Sci. USA 93: 5389–5394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yu, C.G., Mullins, M.A., Warren, G.W., Koziel, M.G. and Estruch, J.J., 1997. Bacillus thuringiensis vegetative insecticidal protein Vip3A lyses midgut epithelium cells of susceptible insects. Appl. Environ. Microbiol. 63 (in press).

  45. Luttrell, R.G., Fitt, G.R., Ramalho, F.S. and Sugonyaev, E.S. 1994. Cotton pest management: a worldwide perspective. Annu. Rev. Entomol. 39: 517–526.

    Article  Google Scholar 

  46. Perkins, J.H. 1980. Boll weevil eradication. Science 207: 1044–1050.

    Article  CAS  PubMed  Google Scholar 

  47. Purcell, J.P., Greenplate, J.T., Jennings, M.G., Ryerse, J.S., Pershing, J.C., Sims, S.R., Prinsen, M.J., Corbin, D.R., Tran, M., Sammons, R.D. and Stonard, R.J. 1993. Cholesterol oxidase: a potent insecticidal protein active against boll weevil larvae. Biochem. Biophys. Res. Commun. 196: 1406–1413.

    Article  CAS  PubMed  Google Scholar 

  48. Corbin, D.R., Greenplate, J.T., Jennings, M.G., Purcell, J.P. and Sammons, R.D. 1995. Method of controlling insects. World Intellectual Property Organization WO 95/01098.

  49. Linder, R. and Bernheimer, A.W. 1984. Enzymatic oxidation of membrane cholesterol in relation to lysis of sheep erythrocytes by corynebacterial enzymes. Archs. Biochem. Biophys. 213: 395–404.

    Article  Google Scholar 

  50. Greenplate, J.T., Duck, N.B., Pershing, J.C. and Purcell, J.P. 1995. Cholesterol oxidase: An oostatic and larvicidal agent active against the cotton boll weevil, Anthonomus grandis. Entomol. Exper. Et Aplicata 74: 253–258.

    Article  CAS  Google Scholar 

  51. Corbin, D.R., Greenplate, J.T., Wong, E.Y. and Purcell, J.R. 1994. Cloning of an insecticidal cholesterol oxidase gene and its expression in bacteria and in plant protoplasts. Appl. Environ. Microbiol. 60: 4239–4244.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Cho, H.-J., Choi, K.-R., Yamashita, M., Morikawa, H. and Murooka, Y. 1995. Introduction and expression of the Streptomyces cholesterol oxidase gene (choA), a potent insecticidal protein active against boll weevil larvae, into tobacco cells. Appl. Microbiol. Biotechnol. 44: 133–138.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Estruch, J., Carozzi, N., Desai, N. et al. Transgenic plants: An emerging approach to pest control. Nat Biotechnol 15, 137–141 (1997). https://doi.org/10.1038/nbt0297-137

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0297-137

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing