Production of Polyhydroxyalkanoates, a Family of Biodegradable Plastics and Elastomers, in Bacteria and Plants


In response to problems associated with plastic waste and its effect on the environment, there has been considerable interest in the development and production of biodegradable plastics. Polyhydroxyalkanoates (PHAs) are polyesters that accumulate as inclusions in a wide variety of bacteria. These bacterial polymers have properties ranging from stiff and brittle plastics to rubber-like materials. Because of their inherent biodegradability, PHAs are regarded as an attractive source of nonpolluting plastics and elastomers that can be used for specialty and commodity products. The possibility of producing PHAs in large scale and at a cost comparable to synthetic plastics has arisen from the demonstration of PHA accumulation in transgenic Arabidopsis plants expressing the bacterial PHA biosynthetic genes. Synergism between knowledge of the enzymes and genes contributing to PHA synthesis in bacteria and engineering of plant metabolic pathways will be necessary for the development of crop plants that produce biodegradable plastics.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Stein, R.S. 1992. Polymer recycling: opportunities and limitations. Proc. Natl. Acad. Sci. USA 89: 835–838.

    CAS  PubMed  Google Scholar 

  2. 2

    Leaversuch, R. 1987. Industry weighs need to make polymer degradable. Modern Plastics 8: 52–55.

    Google Scholar 

  3. 3

    Lindsay, K.F. 1992. ‘Truly degradable’ resins are now truly commercial. Modern Plastics 2: 62–64.

    Google Scholar 

  4. 4

    Byrom, D. 1987. Polymer synthesis by microorganisms: technology and economics. Trends Biotechnol. 5: 246–250.

    CAS  Google Scholar 

  5. 5

    Holmes, P.A., 1988. Biologically produced (R)-3-hydroxyalkanoate polymers and copolymers, pp. 1–65. In: Development in crystalline polymers-2. D. C. Basset (Ed.). Elsevier, London.

    Google Scholar 

  6. 6

    Andersen, A. J. and Dawes, E. A. 1990. Occurence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol. Rev. 54: 450–472.

    Google Scholar 

  7. 7

    Chemical marketing reporter. Vol 248. October 24 1994. Schnell Publishing Co., New York.

  8. 8

    Steinbüchel, A. 1991. Polyhydroxyalkanoic acids. In: Novel biomaterials from biological sources. D. Byrom (Ed.). MacMillan, New York.

    Google Scholar 

  9. 9

    Poirier, Y., Dennis, D.E., Klomparens, K. and Somerville, C. 1992. Polyhydroxybutyrate, a biodegradable thermoplastic, produced in transgenic plants. Science 256: 520–523.

    CAS  PubMed  Google Scholar 

  10. 10

    Poirier, Y., Dennis. D., Klomparens, K., Nawrath, C. and Somerville, C. 1992. Perspectives on the production of polyhydroxyalkanoates in plants. FEMS Microbiol. Rev. 103: 237–246.

    CAS  Google Scholar 

  11. 11

    Poirier, Y., Dennis, D. E., Nawrath, C. and Somerville, C. 1993. Progress toward biologically produced biodegradable thermoplastics. Adv. Materials 5: 30–37.

    CAS  Google Scholar 

  12. 12

    Lemoigne, M. 1926. Produit dédeshydratation et de polymérisation de l'acide β-oxybutyrique. Bull. Soc. Chim. Biol. (Paris) 8: 770–782.

    CAS  Google Scholar 

  13. 13

    Steinbüchel, A. and Schlegel, H.G. 1991. Physiology and molecular genetics of poly (β-hydroxy-alkanoic acid) synthesis in Alcaligenes eutrophus. Mol. Microbiol. 5: 535–542.

    Google Scholar 

  14. 14

    Doi, Y., Tamaki, A., Kunioka, M. and Soga, K. 1988. Production of copolyesters of 3-hydroxybutyrate and 3-hydroxyvalerate by Alcaligenes eutrophus from butyric and pentanoic acids. Appl. Microbiol. Biotechnol. 28: 330–334.

    CAS  Google Scholar 

  15. 15

    Steinbüchel, A., Debzi, E.M., Marchessault, R.H. and Timm, A. 1993. Synthesis and production of poly (3-hydroxyvaleric acid) homopolyester by Chromabacterium violaceum. Appl. Microbiol. Biotechnol. 39: 443–449.

    Google Scholar 

  16. 16

    Haywood, G. W., Anderson, A.J., Chu, L. and Dawes, E.A. 1988. Characterization of two 3-ketothiolases possessing differing substrate specificities in the polyhydroxyalkanoate synthesizing organism Alcaligenes eutrophus. FEMS Microbiol. Lett. 52: 91–96.

    CAS  Google Scholar 

  17. 17

    Haywood, G.W., Anderson, A.J., Chu, L. and Dawes, E.A. 1988. The role of NADH-and NADPH-linked acetoacetyl-CoA reductases in the poly-3-hydroxybutyrate synthesizing organism Alcaligenes eutrophus. FEMS Microbiol. Lett. 52: 259–264.

    CAS  Google Scholar 

  18. 18

    Haywood, G.W., Anderson, A.J. and Dawes, E.A. 1989. The importance of PHB-synthase substrate specificity in polyhydroxyalkanoate synthesis by Alcaligenes eutrophus. FEMS Microbiol. Lett. 57: 1–6.

    CAS  Google Scholar 

  19. 19

    Valentin, H.E., Schöebaum, A. and Steinbüchel, A. 1992. Identification of 4-hydroxyvaleric acid as a constituent of biosynthetic polyhydroxyalkanoic acids from bacteria. Appl. Microbiol. Biotechnol. 36: 507–514.

    CAS  Google Scholar 

  20. 20

    Haywood, G.W., Anderson, A.J., Williams, D.R., Dawes, E.A. and Ewing, D.F. 1991. Accumulation of a poly (hydroxyalkanoate) copolymer containing primarily 3-hydroxyvalerate from simple carbohydrate substrates by Rhodococcus sp. NCIMB 40126. Int. J. Biol. Macromol. 13: 83–88.

    CAS  PubMed  Google Scholar 

  21. 21

    Williams, D.R., Anderson, A.J., Dawes, E.A. and Ewing, D.F. 1994. Production of a co-polyester of 3-hydroxybutyric acid and 3-hydroxyvaleric acid from succinic acid by Rhodococcus ruber. biosynthetic considerations. Appl. Microbiol. Biotechnol. 40: 717–723.

    CAS  Google Scholar 

  22. 22

    Lageveen, R.G., Huisman, G.W., Preusting, H., Ketelaar, P., Eggink, G. and Witholt, B. 1988. Formation of polyesters by Pseudomonas oleovorans: effect of substrates on formation and composition of poly-(R)-3-hydroxyalkanoates and poly-(R)-3-hydroxyalkenoates. Appl. Environ. Microbiol. 54: 2924–2932.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23

    Fritzsche, K., Lenz, R.W. and Fuller, R.C. 1990. Production of unsaturated polyesters by Pseudomonas oleovorans. Int. J. Biol. Macromol. 12: 85–91.

    CAS  PubMed  Google Scholar 

  24. 24

    Fritzsche, K., Lenz, R.W. and Fuller, R.C. 1990. Bacterial polyesters containing branched poly (β-hydroxyalkanoate) units. Int. J. Biol. Macromol. 12: 92–101.

    CAS  PubMed  Google Scholar 

  25. 25

    Lenz, R.W., Kim, Y.B. and Fuller, R.C. 1992. Production of unusual bacterial polyesters by Pseudomonas oleovorans through cometabolism. FEMS Microbiol. Rev. 103: 207–214.

    CAS  Google Scholar 

  26. 26

    Haywood, G.W., Anderson, A.J., Ewing, D.F. and Dawes, E.A. 1990. Accumulation of a polyhydroxyalkanoate containing primarily 3-hydroxydecanoate from simple carbohydrate substrates by Pseudomonas sp. strain NCIMB 40135. Appl. Environ. Microbiol. 56: 3354–3359.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Timm, A. and Steinbüchel, A. 1990. Formation of polyesters consisting of medium-chain-length 3-hydroxyalkanoic acids from gluconate by Pseudomonas aeruginosa and other fluorescent pseudomonads. Appl. Environ. Microbiol. 56: 3360–3367.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28

    Huijberts, G.N.M., Eggink, G., de Waard, P., Huisman, G.W. and Witholt, B. 1992. Pseudomonas putida KT2442 cultivated on glucose accumulates poly (3-hydroxyalkanoates) consisting of saturated and unsaturated monomers. Appl. Environ. Microbiol. 58: 536–544.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29

    Saito, Y. and Doi, Y. 1993. Biosynthesis of poly (3-hydroxy-alkanoates) in Pseudomonas aeruginosa AO-232 from 13C-labeled acetate and propionate. Int. J. Biol. Macromol. 15: 287–292.

    CAS  PubMed  Google Scholar 

  30. 30

    Huijbert, G.N.M., de Rijk, T.C., de Waard, P. and Eggink, G. 1994. 13C nuclear magnetic resonance studies of Pseudomonas putida fatty acid metabolic routes involved in poly (3-hydroxyalkanoate) synthesis. J. Bacteriol. 176: 1661–1666.

    Google Scholar 

  31. 31

    Ramsay, B.A., Saracovan, I., Ramsay, J.A. and Marchessault, R.H. 1992. Effect of nitrogen limitation on long-side-chain poly-β-hydroxyalkanoate synthesis by Pseudomonas resinovorans. Appl. Environ. Microbiol. 58: 744–746.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32

    Brandl, H., Knee, E.J., Fuller, R.C., Gross, R.A. and Lenz. R. 1989. Ability of the phototrophic bacterium Rhodospirillum rubrum to produce various poly (β-hydroxyaIkanoates): potential sources for-biodegradable polyesters. Int. J. Biol. Macromol. 11: 49–55.

    CAS  PubMed  Google Scholar 

  33. 33

    Liebergesell, M., Hustede, E., Timm, A., Steinbüchel, A., Fuller, R.C., Lenz, R.W. and Schlegel, H.G. 1991. Formation of poly (3 hydroxyaIkanoates) by phototrophic and chemolithotrophic bacteria. Arch. Microbiol. 155: 415–421.

    CAS  Google Scholar 

  34. 34

    Liebergesell, M.F. and Steinbüchel, A. 1993. Analysis of polyhydroxyalkanoic acid-biosynthetic genes of anoxygenic phototrophic bacteria reveals synthesis of a polyester exhibiting an unusual composition. Appl. Microbiol. Biotechnol. 40: 292–300.

    CAS  Google Scholar 

  35. 35

    Steinbüchel, A., Hustede, E., Liebergesell, M., Pieper, U., Timm, A. and Valentin, H. 1992. Molecular basis for biosynthesis and accumulation of polyhydroxyalkanoic acid in bacteria. FEMS Microbiol. Rev. 103: 217–230.

    Google Scholar 

  36. 36

    Pieper-Fürst, U., Madkour, M.H., Mayer, F. and Steinbüchel, A. 1994. Purification and characterization of a 14-kilodalton protein that is bound to the surface of polyhydroxyalkanoic acid granules in Rhodococcus ruber. J. Bacteriol. 176: 4328–4337.

    PubMed  PubMed Central  Google Scholar 

  37. 37

    Peoples, O.P. and Sinskey, A.L. 1989. Poly-β-hydroxybutyrate biosynthesis in Alcaligenes eutrophus H16: characterization of the genes encoding β-ketothiolase and acetoacetyl-CoA reductase. J. Biol. Chem. 264: 15293–15297.

    CAS  PubMed  Google Scholar 

  38. 38

    Peoples, O.P. and Sinskey, A.J. 1989. Poly-β-hydroxybutyrate (PHB) biosynthesis in Alcaligenes eutrophus H16: identification and characterization of the PHB polymerase gene (phbC). J. Biol, Chem. 264: 15298–15303.

    CAS  Google Scholar 

  39. 39

    Slater, S.C., Voige, W.H. and Dennis, D.E. 1988. Cloning and expression in Escherichia coli of the Alcaligenes eutrophus H16 poly-β-hydroxybutyrate biosynthetic pathway. J. Bacteriol. 170: 4431–4436.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40

    Schubert, P., Steinbüchel, A. and Schlegel, H.G. 1988. Cloning of the Alcaligenes eutrophus genes for synthesis of poly-β-hydroxybutyric acid (PHB) and synthesis of PHB in Escherichia coli. J. Bacteriol. 170: 5837–5847.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41

    Fukui, T., Yoshimoto, A., Matsumoto, M., Hosokawa, S., Saito, T., Nishikawa, H. and Tomita, K. 1976. Enzymatic synthesis of poly-β-hydroxybutyrate in Zooglea ramigera. Arch. Microbiol. 110: 149–156.

    CAS  PubMed  Google Scholar 

  42. 42

    Gerngross, T.U., Snell, K.D., Peoples, O.P., Sinskey, A.J., Csuhai, E., Masamune, S. and Stubbe, J. 1994. Overexpression and purification of the soluble polyhydroxyalkanoate synthase from Alcaligenes eutrophus: evidence for a required posttanslational modification for catalytic activity. Biochemistry 33: 9311–9320.

    CAS  PubMed  Google Scholar 

  43. 43

    Wakil, S.J. 1989. Fatty acid synthase, a proficient multifunctional enzyme. Biochemistry 28: 4523–4530.

    CAS  PubMed  Google Scholar 

  44. 44

    Gagnon, K.D., Lenz, R.W., Farris, R.J. and Fuller, R.C. 1992. Crystalliza tion behaviour and its influence on the mechanical properties of a thermoplastic elastomer produced by Pseudomonas oleovomns Macromolecules 25: 3723–3728.

    CAS  Google Scholar 

  45. 45

    Luzier, W.D. 1992. Material derived from biomass/biodegradable materials. Proc. Natl. Acad. Sci. USA 89: 839–842.

    CAS  PubMed  Google Scholar 

  46. 46

    Matavulj, M. and Molitoris, H.P. 1992. Fungal degradation of polyhydroxyalkanoates and a semiquantitative assay for screening their degradation by terrestrial fungi. FEMS Microbiol. Rev. 103: 323–332.

    CAS  Google Scholar 

  47. 47

    Schirmer, A., Jendrossek, D. and Schlegel, H.G. 1993. Degradation of poly (3-hydroxyoctanoic acid) [P(3HO)] by bacteria: purification and properties of a P(3HO) depolymerase from Pseudomonas fluorescens GK13. Appl. Environ. Microbiol. 59: 1220–1227.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48

    Müller, B. and Jendrossek, D. 1993. Purification and properties of poly (3-hydroxyvaleric acid) depolymerase from Pseudomonas lemoignei. Appl. Microbiol. Biotechnol. 38: 487–492.

    Google Scholar 

  49. 49

    Jendrossek, D., Knoke, I., Habibian, R.B., Steinbüchel, A. and Schlegel, H.G. 1993. Degradation of poly (3-hydroxyburyrate), PHB, by bacteria and purification of a novel PHB depolymerase from Comamonas sp. J. Environ. Poly. Degrad. 1: 53–63.

    CAS  Google Scholar 

  50. 50

    Jendrossek, D., Müller, B. and Schlegel, H.G. 1993. Cloning and characterization of the poly (hydroxyalkanoic acid)-depolymerase gene locus, phaZl, of Pseudomonas lemoignei and its gene product. Eur. J. Biochem. 218: 701–710.

    CAS  PubMed  Google Scholar 

  51. 51

    Saito, T., Suzuki, K., Yamamoto, J., Fukui, T., Miwa, K., Tomita, K., Nakanishi, S., Odani, S., Suzuki, J.I. and Ishikawa, K. 1989. Cloning, nucleotide sequence, and expression in Escherichia coli of the gene for poly (3-hydroxybutyrate) depolymerase from Alcaligenes faecalis. J. Bacteriol. 171: 184–189.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52

    Holland, S.J., Jolly, A.M., Yasin, M. and Tighe, B.J. 1987. Polymers for biodegradable medical devices II. Hydroxybutyrate-hydroxyvalerate copolymers: hydrolytic degradation studies. Biomaterials 8: 289–295.

    CAS  PubMed  Google Scholar 

  53. 53

    Baptist, J.N. 1962. Process for preparing poly-β-hydroxybutyric acid. US Patent Application US 3044942.

  54. 54

    Baptist, J.N. and Werber, F.X. 1965. Plasticized poly-beta-hydroxybutyric acid and process. US Patent Application US 3182036.

    Google Scholar 

  55. 55

    Byrom, D. 1990. Industrial production of copolymer from Alcaligenes eutrophus, p. 113–117. In: Novel biodegradable microbial polymers. E. A. Dawes (Ed.), Kluwer, Dordrecht.

    Google Scholar 

  56. 56

    Hrabak, O. 1992. Industrial production of poly-β-hydroxybutyrate. FEMS Microbiol. Rev. 103: 251–256.

    CAS  Google Scholar 

  57. 57

    Marchessault, R.H., Monasterios, C.J. and Lepoutre, P. 1990. Properties of poly-β-hydroxyalkanoate latex: nascent morphology, film formation and surface chemistry, p. 97–112. In: Novel biodegradable microbial polymers. E.A. Dawes (Ed.), Kluwer, Dordrecht.

    Google Scholar 

  58. 58

    Seebach, D., Roggo, S. and Zimmermann, J. 1987. Biological-chemical preparation of 3-hydroxycarboxylic acids and their use in EPC-synthesis, p. 85–126. In: Stereochemistry of organic and bioorganic transformations. W. Bartmann and K.B. Sharpless (Eds.). VCH Verlagsgesellschaft. Weinheim.

    Google Scholar 

  59. 59

    Page, W.J. 1992. Production of polyhydroxyalkanoates by Azotobacter vinelandii UWD in beet molasses culture. FEMS Microbiol. Rev. 105: 149–158.

    Google Scholar 

  60. 60

    Fidler, S. and Dennis, D. 1992. Polyhydroxyalkanoate production in recombinant Escherischia coli. FEMS Microbiol. Rev. 103: 231–236.

    CAS  Google Scholar 

  61. 61

    Zhang, H., Obias, V., Gonyer, K. and Dennis, D. 1994. Production of polyhydroxyalkanoates in sucrose-utilizing recombinant Escherichia coli and Kleb-siella strains. Appl. Environ. Microbiol. 60: 1198–1205.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62

    De Koning, G.J.M., Van Bilesen, H.M.M., Lemstra, P.J., Hazenberg, W., Withold, B., Preusting, H., Van der Galiën, J.G., Schirmer, A. and Jendrossek, D. 1994. A biodegradable rubber by crosslinking poly (hydroxyalkanoate) from Pseudomonas oleovorans. Polymer 35: 2090–2097.

    CAS  Google Scholar 

  63. 63

    Rutenberg, M.W. and Solarek, D. 1984. Starch derivatives: production and uses, p. 311–388. In: Starch: chemistry and technology. R. L. Whistler, J. N. BeMiller and E. F. Paschall (Eds,). Academic Press, Qrlando.

    Google Scholar 

  64. 64

    Feed situation and outlook report. May 1994. U. S. Department of Agriculture.

  65. 65

    The CRB commodity yearbook 1994. Knight-Ridder Financial Commodity Bureau. John Wiley & Sons Inc, New York.

  66. 66

    Pryde, E.H. and Rothfus, J.A. 1989. Industrial and nonfood uses of vegetable oils, p. 87–117. In: Oil crops of the world. G. Röbbelen, R. K. Downey and A. Ashri (Eds.). McGraw-Hill, New York.

    Google Scholar 

  67. 67

    Oil crops: situation and outlook. July 1994. U. S. Department of Agriculture.

  68. 68

    Kishore, G.M. and Somerville, C.R. 1993. Genetic engineering of commercially useful biosynthetic pathways in transgenic plants. Curr. Opin. Biotechnol. 4: 152–158.

    CAS  PubMed  Google Scholar 

  69. 69

    Stark, D.M., Timmermann, K.P., Barry, G.F., Preiss, J. and Kishore, G.M. 1992. Regulation of the amount of starch in plant tissues by ADP glucose phosphorylase. Science 258: 287–292.

    CAS  PubMed  Google Scholar 

  70. 70

    Voelker, T.A., Worrell, A.C., Anderson, L., Bleibaum, J., Fan, C., Hawkins, D.J., Adke, S.E. and Davies, H.M. 1992. Fatty acid biosynthesis redirected to medium chains in transgenic oilseed plants. Science 257: 72–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71

    Vandekerckhove, J., VanDamme, J., Van Lijsebettens, M., Botterman, J., De Block, M., Vandewiele, M., DeClercq, A., Leemans, J., Van Montagu, M. and Krebber, E. 1989. Enkephalins produced in transgenic plants using modified 2S seed storage proteins. Bio/Technology 7: 929–932.

    CAS  Google Scholar 

  72. 72

    Sijmons, P.C., Dekker, B.M.M., Schrammeijer, B., Verwoerd, T.C., Van den Elzen, P.J.M. and Hoekema, A. 1990. Production of correctly processed human serum albumin in transgenic plants. Bio/Technology 8: 217–221.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73

    De Zoeten, G.A., Penswick, J.R., Horisberger, M.A., Ahl, P., Schultze, M. and Hohn, T. 1989. The expression, localization, and effect of a human interferon in plants. Virology 172: 213–222.

    CAS  PubMed  Google Scholar 

  74. 74

    Hodgson, J. 1992. Whole animals for wholesale protein production. Bio/Technology 10: 863–866.

    CAS  PubMed  Google Scholar 

  75. 75

    Pen, J., Molendÿk, L., Quax, W.J., Sÿmons, P.C., Van Ooijen, A.J.J., Van den Elzen, P.J.M., Rietveld. K. and Hoekema, A. 1992. Production of active Bacillus licheniformis alpha-amylase in tobacco and its application in starch liquefaction. Bio/Technology 10: 292–296.

    CAS  Google Scholar 

  76. 76

    Meyerowitz, E.M. 1987. Arabidopsis thaliana. Ann Rev. Genet. 21: 93–111.

    Google Scholar 

  77. 77

    Lundgren, D.G., Pfister, R.M. and Merrick, J.M. 1964. Structure of poly-β-hydroxybutyric acid granules. J. Gen. Microbiol. 34: 441–446.

    CAS  PubMed  Google Scholar 

  78. 78

    Poirier, Y., Schechtman, L.A., Satkowski, M.M., Noda, I. and Somerville, C. 1995. Synthesis of high molecular weight poly ([R]-(-)-3-hydroxybutyrate) in transgenic Arabidopsis thaliana plant cells. Int. J. Biol. Macromol 17 In press.

    CAS  PubMed  Google Scholar 

  79. 79

    Nawrath, C., Poirier, Y. and Somerville, C.R. 1994. Plastid targeting of the enzymes required for the production of polyhydroxybutyrate in higher plants, p. 136–149. In: Biodegradable plastics and polymers. Y. Doi and K. Fukuda (Eds.). Elsevier, Amsterdam.

    Google Scholar 

  80. 80

    Nawrath, C., Poirier, Y. and Somerville, C. 1994. Targeting of the polyhydroxybutyrate biosynthetic pathway to the plastids of Arabidopsis thaliana results in high-levels of polymer accumulation. Proc. Natl. Acad. Sci. USA 91 In press.

  81. 81

    World casts. Issue 121. September 16, 1994. Information Access Company, Foster City.

  82. 82

    World casts. Issue 119. March 16, 1994. Information Access Company, Foster City.

  83. 83

    Reusch, R. 1992. Biological complexes of poly-β-hydroxybutyrate. FEMS Microbiol. Rev. 103: 119–130.

    CAS  Google Scholar 

  84. 84

    Williams, S., Friedrich, L., Dincher, S., Carozzi, N., Kessmann, H., Ward, E. and Ryals, J. 1992. Chemical regulation of Bacillus thuringiensis δ-endotoxin expression in transgenic plants. Bio/Technology 10: 540–543.

    Google Scholar 

  85. 85

    Marchessault, R.H., Bluhm, T.L., Deslandes, Y., Harner, G.K., Orts, W.J., Sundararajan, P.R., Taylor Bloembergen, S. and Holden, D.A. 1988. Poly (β-hydroxyalkanoates): biorefinery polymers in search of applications. Makromol. Chem. Macromol. Symp. 19: 235–254.

    CAS  Google Scholar 

  86. 86

    Avella, M. and Martuscelli, E. 1988. Poly-D-(-) (3-hydroxybutyrate)/poly (ethylene oxide) blends: phase diagram, thermal and crystallization behaviour. Polymer 29: 1731–1737.

    CAS  Google Scholar 

  87. 87

    Greco, P. and Martucelli. E. 1989. Crystallization and thermal behaviour of poly (D (-)-3-hydroxybutyrate)-based blends. Polymer 30: 1475–1483.

    CAS  Google Scholar 

  88. 88

    Dave, P., Parikh, M., Reeve, M., Gross, R.A. and McCarthy, S.P. 1990. Morphological and blend miscibility effetcs on the biodegradability of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) and blends. Polym. Mater. Sci. Eng. 63: 726–731.

    CAS  Google Scholar 

  89. 89

    Abe, H., Doi, Y., Satkowski, M.M. and Noda, I. 1994. Miscibility and morphology of isotactic and atactic poly (3-hydroxybutyrate). Macromolecules 27: 50–54.

    CAS  Google Scholar 

  90. 90

    De Koning, G.J.M. and Lemstra, P.J. 1993. Crystallization phenomena in bacterial poly[(R)-3-hydroxybutyrate]: 2. Embrittlement and rejuvination. Polymer 34: 4089–4094.

    CAS  Google Scholar 

  91. 91

    De Koning, G.J.M., Scheeren, A.H.C., Lemstra, P.J., Peeters, M. and Reynaers, H. 1994. Crystallization phenomena in bacterial poly[(R)-3-hydroxybutyrate]: 3. Toughening via texture changes. Polymer 35: 4598–4605.

    CAS  Google Scholar 

  92. 92

    Eggersdorfer, M., Meyer, J. and Eckes, P. 1992. Use of renewable resources for non-food materials. FEMS Microbiol. Rev. 103: 355–364.

    Google Scholar 

  93. 93

    King, P.P. 1982. Biotechnology: an industrial view. J. Chem. Tech. Biotechnol. 32: 2–8.

    CAS  Google Scholar 

  94. 94

    Mimoto, H., Barham, P.J. and Keller, A. 1988. Temperature dependence of mechanical properties of poly (β-hydroxybutyrateβ-hydroxyvalerate). Polym. Rep. 29: 112–115.

    Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Poirier, Y., Nawrath, C. & Somerville, C. Production of Polyhydroxyalkanoates, a Family of Biodegradable Plastics and Elastomers, in Bacteria and Plants. Nat Biotechnol 13, 142–150 (1995).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing