Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Paper
  • Published:

High Level Escherichia coli Expression and Production of a Bivalent Humanized Antibody Fragment

Abstract

Many clinical uses of antibodies will require large quantities of fragments which are bivalent and humanized. We therefore attempted to generate humanized F(ab′)2 fragments by secretion from E. coli. Titers of 1-2 g l−1 of soluble and functional Fab′ fragments have been routinely achieved as judged by antigen-binding ELISA. Surprisingly, this high expression level of Fab′ in the periplasmic space of E. coli does not drive dimerization. However, we have developed a protocol to directly and efficiently recover Fab′ with the single hinge cysteine in the free thiol state, allowing F(ab′)2 formation by chemically-directed coupling in vitro. The E. coli derived humanized F(ab′)2 fragment is indistinguishable from F(ab′)2 derived from limited proteolysis of intact antibody in its binding affinity for the antigen, p185HER2, and anti-proliferative activity against the human breast tumor cell line, SK-BR-3, which over-expresses p185HER2. This system makes E. coli expression of bivalent antibody fragments for human therapy (or other uses) practical.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Skerra, A. and Plückthun, A. 1988. Assembly of a functional immunoglobulin Fv fragment in Escherichia coli. Science 240: 1038–1041.

    Article  CAS  PubMed  Google Scholar 

  2. Better, M., Chang, C.P., Robinson, R.R. and Horwitz, A.H. 1988. Escherichia coli secretion of an active chimeric antibody fragment. Science 240: 1041–1043.

    Article  CAS  PubMed  Google Scholar 

  3. Plückthun, A. 1991. Antibody engineering: advances form the use of Escherichia coli expression systems. Bio/Technology 9: 545–551.

    Google Scholar 

  4. Carter, P., Presta, L., Gorman, C.M., Ridgway, J.B.B., Henner, D., Wong, W.L.T., Rowland, A.M., Kotts, C., Carver, M.E. and Shepard, H.M. Humanization of an anti-p185HER2 antibody for human cancer therapy. 1992. Proc. Natl. Acad. Sci. USA In press.

  5. Jones, P.T., Dear, P.H., Foote, J., Neuberger, M.S. and Winter, G. 1986. Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature 321: 522–525.

    Article  CAS  PubMed  Google Scholar 

  6. Riechmann, L., Clark, M., Waldmann, H. and Winter, G. 1988. Reshaping human antibodies for therapy. Nature 332: 323–327.

    Article  CAS  PubMed  Google Scholar 

  7. Verhoeyen, M., Milstein, C. and Winter, G. 1988. Reshaping human antibodies: grafting an antilysozyme activity. Science 239: 1534–1536.

    Article  CAS  PubMed  Google Scholar 

  8. Hale, G., Dyer, M.J.S., Clark, M.R., Phillips, J.M., Marcus, R., Riechmann, L., Winter, G. and Waldmann, H. 1988. Remission induction in non-Hodgkin lymphoma with reshaped human monoclonal antibody CAMPATH-1H. Lancet i: 1394–1399.

    Article  Google Scholar 

  9. LoBuglio, A.F., Wheeler, R.H., Trang, J., Haynes, A., Rogers, K., Harvey, E.B., Sun, L., Ghrayeb, J. and Khazeli, M.B. 1989. Mouse/human chimeric monoclonal antibody in man: kinetics and immune response. Proc. Natl. Acad. Sci. USA 86: 4220–4224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Blumenthal, R.D., Sharkey, R.M. and Goldenberg, D.M. 1990. Current perspectives and challenges in the use of monoclonal antibodies as imaging and therapeutic agents. Adv. Drug Deliv. Rev. 4: 279–318.

    Article  CAS  Google Scholar 

  11. Crothers, D.M. and Metzger, H. 1972. The influence of polyvalency on the binding properties of antibodies. Immunochem. 9: 341–357.

    Article  CAS  Google Scholar 

  12. Hudziak, R.M., Lewis, G.D., Winget, M., Fendly, B.M., Shepard, H.M. and Ullrich, A. 1989. p185HER2 monoclonal antibody has antiproliferative effects in vitro and sensitizes human breast tumor cells to tumor necrosis factor. Molec. Cell. Biol. 9: 1165–1172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fendly, B.M., Winget, M., Hudziak, R.M., Lipari, M.T., Napier, M.A. and Ullrich, A. 1990. Characterization of murine monoclonal antibodies reactive to either the human epidermal growth factor receptor or HER2/neu gene product. Cancer Res. 50: 1550–1558.

    CAS  PubMed  Google Scholar 

  14. Slamon, D.J., Clark, G.M., Wong, S.G., Levin, W.J., Ullrich, A. and McGuire, W.L. 1987. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235: 177–182.

    Article  CAS  PubMed  Google Scholar 

  15. Slamon, D.J., Godolphin, W., Jones, L.A., Holt, J.A., Wong, S.G., Keith, D.E., Levin, W.J., Stuart, S.G., Udove, J., Ullrich, A. and Press, M.F. 1989. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 244: 707–712.

    Article  CAS  PubMed  Google Scholar 

  16. Bolivar, F., Rodriguez, R.L., Greene, P.J., Betlach, M.C., Heyneker, H.L., Boyer, H.W., Crosa, J.H. and Falkow, S. 1977. Construction and characterization of new cloning vehicles. II. A multipurpose cloning system. Gene 2: 95–113.

    Article  CAS  PubMed  Google Scholar 

  17. Chang, C.N., Kuang, W.-J. and Chen, E.Y. 1986. Nucleotide sequence of the alkaline phosphatase gene of Escherichia coli. Gene 44: 121–125.

    Article  CAS  PubMed  Google Scholar 

  18. Picken, R.N., Mazaitis, A.J., Maas, W.K., Rey, M. and Heyneker, H. 1983. Nucleotide sequence of the gene for heat-stable enterotoxin II of Escherichia coli. Infect. Immun. 42: 269–275.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Palm, W. and Hilschmann, N. 1975. Die primärstruktur einer kristallinen monoklonalen immunoglobulin-L-kette vom κ-typ subgruppe I (Bence-Jones-Protein Rei), isolierung und charakterisierung der tryptischen peptide; die vollständige aminosäuresequenz des proteins. Z. Physiol. Chem. 356: 167–191.

    Article  CAS  Google Scholar 

  20. Ellison, J.W., Berson, B.J. and Hood, L.E. 1982. The nucleotide sequence of a human immunoglobulin Cγ1 gene. Nucleic Acids Res. 10: 4071–4079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Brennan, M., Davison, P.F. and Paulus, H. 1985. Preparation of bispecific antibodies by chemical recombination of monoclonal immunoglobulin G1 fragments. Science 229: 81–83.

    Article  CAS  PubMed  Google Scholar 

  22. Wells, J.A., Vasser, M. and Powers, D.B. 1985. Cassette mutagenesis: an efficient method for generation of multiple mutations at defined sites. Gene 34: 315–323.

    Article  CAS  PubMed  Google Scholar 

  23. Scholtissek, S. and Grosse, F. 1987. A cloning cartridge of λ t0 terminator. Nucleic Acids Res. 15: 3185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Parham, P. 1983. Preparation and purification of active fragments from mouse monoclonal antibodies, p. 1401–1423. In: Cellular Immunology, Vol. 1, 4th Edition, E.M. Weir, (Ed.). Blackwell Scientific Press, Oxford, UK.

    Google Scholar 

  25. Ellman, G.L. 1959. Tissue sulfhydryl groups. Arch. Biochem. Biophys. 82: 70–77.

    Article  CAS  PubMed  Google Scholar 

  26. Matsudaira, P. 1987. Sequences from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J. Biol. Chem. 262: 10035–10038.

    CAS  PubMed  Google Scholar 

  27. Doi, E. and Jirgensons, B. 1970. Circular dichroism studies on the acid denaturation of γ-immunoglobulin G and its fragments. Biochemistry 9: 1066–1073.

    Article  CAS  PubMed  Google Scholar 

  28. Privalov, P.L. and Khechinashvili, N.N. 1974. A thermodynamic approach to the problem of stabilization of globular protein structure: a calorimetric study. J. Mol. Biol. 86: 665–684.

    Article  CAS  PubMed  Google Scholar 

  29. Shalaby, M.R., Shepard, H.M., Presta, L., Rodrigues, M., Beverley, P.C.L., Feldmann, M. and Carter, P. 1992. The development of humanized bispecific antibodies reactive with cytotoxic lymphocytes and tumor cells overexpressing HER2 proto-oncogene. J. Exp. Med. In press.

  30. Glennie, M.J., McBride, H.M., Worth, A.T. and Stevenson, G.T. 1987. Preparation and performance of bispecific F(ab′γ)2 antibody containing thioether-linked Fab′γ fragments. J. Immunol. 139: 2367–2375.

    CAS  PubMed  Google Scholar 

  31. Glennie, M.J., Brennand, D.M., Bryden, F., McBride, H.M., Stirpe, F., Worth, A.T. and Stevenson, G.T. 1988. Bispecific F(ab′γ)2 antibody for the delivery of saporin in the treatment of lymphoma. J. Immunol. 141: 3662–3670.

    CAS  PubMed  Google Scholar 

  32. Bailon, P. and Roy, S.K. 1990. Recovery of recombinant proteins by immunoaffinity chromatography, p. 150–167. In: Protein purification: from Molecular Mechanisms to Large-Scale Processes. Ladisch, M.R., Willson, R.C., Painton, C-d. C. and Builder, S.E. (Eds.). American Chemical Society Symposium Series no. 427. ACS Press, Washington, DC.

    Chapter  Google Scholar 

  33. Carter, P. and Wells, J.A. 1987. Engineering enzyme specificity by “substrate-assisted catalysis”. Science 237: 394–399.

    Article  CAS  PubMed  Google Scholar 

  34. Martin, F.J., Hubbell, W.L. and Papahadjopoulos, D. 1981. Immunospecific targeting of liposomes to cells: a novel and efficient method for covalent attachment of Fab′ fragments via disulfide bonds. Biochemistry 20: 4229–4238.

    Article  CAS  PubMed  Google Scholar 

  35. Boyle, A. 1990. Protocols in Molecular Biology, chapter 3 F.A. Ausubel, R. Brent, R.E. Kingston, D.D. Moore, J.G. Seidman, J.A. Smith, and K. Struhl (Eds.). Greene Publishing and Wiley- Interscience, New York, USA.

    Google Scholar 

  36. Vieira, J. and Messing, J. 1987. Production of single-stranded plasmid DNA. Methods Enzymol. 153: 3–11.

    Article  CAS  PubMed  Google Scholar 

  37. Carter, P. 1991. Mutagenesis facilitated by the removal or introduction of unique restriction sites, chapter 1 In: Mutagenesis: A Practical Approach. M.J. McPherson (Ed.). IRL Press, Oxford, UK.

    Google Scholar 

  38. Sanger, F., Nicklen, S. and Coulson, A.R. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74: 5463–5467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Maurer, R., Meyer, B.J. and Ptashne, M. 1980. Gene regulation at the right operator (OR) of bacteriophage λ. I. OR3 and autogenous negative control by repressor. J. Mol. Biol. 139: 147–161.

    Article  CAS  PubMed  Google Scholar 

  40. Creighton, T.E. 1990. Disulphide bonds between cysteine residues, chapter 7 In: Protein Structure: A Practical Approach. T.E. Creighton (Ed.). IRL Press, Oxford, UK.

    Google Scholar 

  41. Henzel, W.J., Bourell, J.H. and Stults, J.T. 1990. Analysis of protein digests by capillary high-performance liquid chromatography and on-line fast atom bombardment mass spectrometry. Anal. Biochem. 187: 228–233.

    Article  CAS  PubMed  Google Scholar 

  42. Makino, K., Shinagawa, H., Amemura, M. and Nakata, A. 1986. Nucleotide sequence of the phoB gene, the positive regulatory gene for the phosphate regulon of Escherichia coli K-12. J. Mol. Biol. 190: 37–44.

    Article  CAS  PubMed  Google Scholar 

  43. Kabat, E.A., Wu, T.T., Reid-Miller, M., Perry, H.M. and Gottesmann, K.S. 1987. Sequences of Proteins of Immunological Interest. National Institutes of Health, Bethesda, MD.

    Google Scholar 

  44. Chothia, C. and Lesk, A.M. 1987. Canonical structures for the hypervariable regions of immunoglobulins. J. Mol. Biol. 196: 901–917.

    Article  CAS  PubMed  Google Scholar 

  45. Lamoyi, E. 1986. Preparation of F(ab′)2 fragments from mouse IgG of various subclasses. Methods Enzymol. 121: 652–663.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carter, P., Kelley, R., Rodrigues, M. et al. High Level Escherichia coli Expression and Production of a Bivalent Humanized Antibody Fragment. Nat Biotechnol 10, 163–167 (1992). https://doi.org/10.1038/nbt0292-163

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0292-163

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing