Research Paper | Published:

Heritable Damage to Yeast Caused by Transformation

Bio/Technologyvolume 9pages179182 (1991) | Download Citation



The introduction of plasmid DNA into yeast by transformation or electroporation, but not by cytoduction, results in the induction of a slow growth phenotype. This phenotype is inherited as a dominant Mendelian trait, which is only exhibited in the absence of the native 2μ nuclear DNA plasmid of yeast. The use of recombinant DNA technology in yeast, therefore, does not necessarily manipulate the genome in a precise and completely defined way.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Kniskern, P.J., Hagopian, A., Montgomery, D.L., Burke, P., Dunn, N.R., Hofmann, K.J., Miller, W.J. and Ellis, R.W. 1986. Unusually high-level expression of a foreign gene (hepatitis B virus core antigen) in Saccharomyces cerevisiae . Gene 46: 135–141.

  2. 2

    Hallewell, R.A., Mills, R., Tekamp-Olson, P., Blacher, R., Rosenberg, R., Otting, F., Masiarz, F.R. and Scandella, J.C. 1987. Amino terminal acetylation of authentic human Cu, Zn superoxide dismutase produced in yeast. Bio/Technology 5: 363–366.

  3. 3

    Oliver, S.G. 1990. “Classical” yeast biotechnology, p. 213–248. In: Biotechnology Handbooks: Saccharomyces (M. F. Tuite and S. G. Oliver (Eds.). Plenum, New York.

  4. 4

    Rudolph, H., Koenig-Rauseo, I. and Hinnen, A. 1985. One-step gene replacement in yeast by cotransformation. Gene 36: 87–95.

  5. 5

    Hinnen, A., Hicks, J.B. and Fink, G.R. 1978. Transformation of yeast. Proc. Natl. Acad. Sci. USA 75: 1929–1933.

  6. 6

    Ito, H., Fukuda, Y., Murata, K. and Kimura, A. 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153: 163–168.

  7. 7

    Hashimoto, H., Morikawa, H., Yamada, Y. and Kimura, A. 1985. A novel method for transformation of intact yeast cells by electroinjection of plasmid DNA. Appl. Microbiol. Biotechnol. 21: 336–339.

  8. 8

    Oliver, S.G., Danhash, N. and Gardner, D.C.J. 1989. Plasmid transformation and maintenance in yeast, p. 133–150. In: Genetic Transformation and Expression. L. O. Butler, C. Harwood and B. E. B. Moseley (Eds.). Intercept, London.

  9. 9

    Mead, D.J., Gardner, D.C.J. and Oliver, S.G. 1986. The yeast 2μ plasmid: strategies for the survival of a selfish DNA. Mol. Gen. Genet. 205: 417–421.

  10. 10

    Dobson, M.J., Futcher, A.B. and Cox, B.S. 1980. Loss of 2μ DNA from Saccharomyces cerevisiae transformed with chimaeric plasmid PJDB219. Curr. Genet. 2: 201–205.

  11. 11

    Mead, D.J., Gardner, D.C.J. and Oliver, S.G. 1987. Phenotypic differences between induced and spontaneous 2μ-plasmid-free segregants of Saccharomyces cerevisiae . Curr. Genet. 11: 415–418.

  12. 12

    Erhart, E. and Hollenberg, C.P. 1983. The presence of a defective LEU2 gene on 2μ. DNA recombinant plasmids of Saccharomyces cerevisiae is responsible for curing and high copy number. J. Bacteriol. 156: 625–635.

  13. 13

    Beggs, J.D. 1978. Transformation of yeast by a replicating hybrid plasmid. Nature 275: 104–109.

  14. 14

    Chan, C.S.M. and Tye, B.K. 1980. Autonomously replicating sequences in Saccharomyces cerevisiae . Proc. Natl. Acad. Sci. USA 77: 6329–6333.

  15. 15

    Conde, J. and Fink, G.R. 1976. A mutant of Saccharomyces cerevisiae defective for nuclear fusion. Proc. Natl. Acad. Sci. USA 73: 3651–3655.

  16. 16

    Gibbs, C.P., Reimann, B.Y., Schultz, E., Kaufmann, A., Haas, R. and Meyer, T.F. 1989. Reassortment of pilin genes in Neisseria gonorrhoea occurs by two distinct mechanisms. Nature 338: 651–652.

  17. 17

    Higgins, D.R., McGill, C., Shafer, B.K. and Strathern, J.N. 1990. Analysis of interchromosomal mitotic recombination. Yeast 6: S85.

  18. 18

    Shortle, D., Novick, P. and Botstein, D. 1984. Construction and genetic characterisation of temperature-sensitive mutant alleles of the yeast actin gene. Proc. Natl. Acad. Sci. USA 81: 4889–4893.

  19. 19

    Mead, D.J., Gardner, D.C.J. and Oliver, S.G. 1986. Enhanced stability of a 2μ-based recombinant plasmid in diploid yeast. Biotech. Letts. 8: 391–396.

  20. 20

    Hill, J.E., Myers, A.M., Koerner, T.J. and Tzagoloff, A. 1986. Yeast/E. coli shuttle vectors with multiple unique restriction sites. Yeast 2: 163–167.

  21. 21

    Sherman, F., Fink, G.R. and Lawrence, C.W. 1974. Methods in Yeast Genetics, Cold Spring Harbour Laboratory, New York.

  22. 22

    Kielland-Brandt, M.C., Wilken, B., Holmberg, S., Litske Petersen, J.G. and Nilsson-Tillgren, T. 1980. Genetic evidence for nuclear location of 2-micron DNA in yeast. Carlsberg. Res. Comm. 45: 119–124.

  23. 23

    Walmsley, R.M., Gardner, D.C.J. and Oliver, S.G. 1983. Stability of a cloned gene in yeast grown in chemostat culture. Mol. Gen. Genet. 192: 361–365.

  24. 24

    Esener, A.A., Roels, J.A., Kossen, N.W.F. and Roozenburg, J.W.H. 1981. Description of microbial growth behaviour during the wash-out phase; Determination of the maximum specific growth rate. European J. Appl. Microbiol. Biotechnol. 13: 141–144.

  25. 25

    Pirt, S.J. 1975. Principles of Microbe and Cell Cultivation. Blackwell Scientific Publications, Oxford.

  26. 26

    Brown, S.W., Sugden, D.A. and Oliver, S.G. 1984. Ethanol production and tolerance in grande and petite yeasts. J. Chem. Technol. Biotechnol. 34B: 116–120.

Download references

Author information

Author notes

  1. Stephen G. Oliver: Corresponding author.


  1. Department of Biochemistry and Applied Molecular Biology, University of Manchester Institute of Science and Technology, PO Box 88, Manchester, M60 1QD, UK

    • Nadia Danhash
    • , David C. J. Gardner
    •  & Stephen G. Oliver


  1. Search for Nadia Danhash in:

  2. Search for David C. J. Gardner in:

  3. Search for Stephen G. Oliver in:

About this article

Publication history



Issue Date


Further reading