Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Paper
  • Published:

Heritable Damage to Yeast Caused by Transformation

Abstract

The introduction of plasmid DNA into yeast by transformation or electroporation, but not by cytoduction, results in the induction of a slow growth phenotype. This phenotype is inherited as a dominant Mendelian trait, which is only exhibited in the absence of the native 2μ nuclear DNA plasmid of yeast. The use of recombinant DNA technology in yeast, therefore, does not necessarily manipulate the genome in a precise and completely defined way.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kniskern, P.J., Hagopian, A., Montgomery, D.L., Burke, P., Dunn, N.R., Hofmann, K.J., Miller, W.J. and Ellis, R.W. 1986. Unusually high-level expression of a foreign gene (hepatitis B virus core antigen) in Saccharomyces cerevisiae . Gene 46: 135–141.

    Article  CAS  PubMed  Google Scholar 

  2. Hallewell, R.A., Mills, R., Tekamp-Olson, P., Blacher, R., Rosenberg, R., Otting, F., Masiarz, F.R. and Scandella, J.C. 1987. Amino terminal acetylation of authentic human Cu, Zn superoxide dismutase produced in yeast. Bio/Technology 5: 363–366.

    CAS  Google Scholar 

  3. Oliver, S.G. 1990. “Classical” yeast biotechnology, p. 213–248. In: Biotechnology Handbooks: Saccharomyces (M. F. Tuite and S. G. Oliver (Eds.). Plenum, New York.

    Google Scholar 

  4. Rudolph, H., Koenig-Rauseo, I. and Hinnen, A. 1985. One-step gene replacement in yeast by cotransformation. Gene 36: 87–95.

    Article  CAS  PubMed  Google Scholar 

  5. Hinnen, A., Hicks, J.B. and Fink, G.R. 1978. Transformation of yeast. Proc. Natl. Acad. Sci. USA 75: 1929–1933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ito, H., Fukuda, Y., Murata, K. and Kimura, A. 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153: 163–168.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Hashimoto, H., Morikawa, H., Yamada, Y. and Kimura, A. 1985. A novel method for transformation of intact yeast cells by electroinjection of plasmid DNA. Appl. Microbiol. Biotechnol. 21: 336–339.

    Article  CAS  Google Scholar 

  8. Oliver, S.G., Danhash, N. and Gardner, D.C.J. 1989. Plasmid transformation and maintenance in yeast, p. 133–150. In: Genetic Transformation and Expression. L. O. Butler, C. Harwood and B. E. B. Moseley (Eds.). Intercept, London.

    Google Scholar 

  9. Mead, D.J., Gardner, D.C.J. and Oliver, S.G. 1986. The yeast 2μ plasmid: strategies for the survival of a selfish DNA. Mol. Gen. Genet. 205: 417–421.

    Article  CAS  PubMed  Google Scholar 

  10. Dobson, M.J., Futcher, A.B. and Cox, B.S. 1980. Loss of 2μ DNA from Saccharomyces cerevisiae transformed with chimaeric plasmid PJDB219. Curr. Genet. 2: 201–205.

    Article  CAS  PubMed  Google Scholar 

  11. Mead, D.J., Gardner, D.C.J. and Oliver, S.G. 1987. Phenotypic differences between induced and spontaneous 2μ-plasmid-free segregants of Saccharomyces cerevisiae . Curr. Genet. 11: 415–418.

    Article  CAS  Google Scholar 

  12. Erhart, E. and Hollenberg, C.P. 1983. The presence of a defective LEU2 gene on 2μ. DNA recombinant plasmids of Saccharomyces cerevisiae is responsible for curing and high copy number. J. Bacteriol. 156: 625–635.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Beggs, J.D. 1978. Transformation of yeast by a replicating hybrid plasmid. Nature 275: 104–109.

    Article  CAS  PubMed  Google Scholar 

  14. Chan, C.S.M. and Tye, B.K. 1980. Autonomously replicating sequences in Saccharomyces cerevisiae . Proc. Natl. Acad. Sci. USA 77: 6329–6333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Conde, J. and Fink, G.R. 1976. A mutant of Saccharomyces cerevisiae defective for nuclear fusion. Proc. Natl. Acad. Sci. USA 73: 3651–3655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gibbs, C.P., Reimann, B.Y., Schultz, E., Kaufmann, A., Haas, R. and Meyer, T.F. 1989. Reassortment of pilin genes in Neisseria gonorrhoea occurs by two distinct mechanisms. Nature 338: 651–652.

    Article  CAS  PubMed  Google Scholar 

  17. Higgins, D.R., McGill, C., Shafer, B.K. and Strathern, J.N. 1990. Analysis of interchromosomal mitotic recombination. Yeast 6: S85.

    Google Scholar 

  18. Shortle, D., Novick, P. and Botstein, D. 1984. Construction and genetic characterisation of temperature-sensitive mutant alleles of the yeast actin gene. Proc. Natl. Acad. Sci. USA 81: 4889–4893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mead, D.J., Gardner, D.C.J. and Oliver, S.G. 1986. Enhanced stability of a 2μ-based recombinant plasmid in diploid yeast. Biotech. Letts. 8: 391–396.

    Article  Google Scholar 

  20. Hill, J.E., Myers, A.M., Koerner, T.J. and Tzagoloff, A. 1986. Yeast/E. coli shuttle vectors with multiple unique restriction sites. Yeast 2: 163–167.

    Article  CAS  PubMed  Google Scholar 

  21. Sherman, F., Fink, G.R. and Lawrence, C.W. 1974. Methods in Yeast Genetics, Cold Spring Harbour Laboratory, New York.

    Google Scholar 

  22. Kielland-Brandt, M.C., Wilken, B., Holmberg, S., Litske Petersen, J.G. and Nilsson-Tillgren, T. 1980. Genetic evidence for nuclear location of 2-micron DNA in yeast. Carlsberg. Res. Comm. 45: 119–124.

    Article  CAS  Google Scholar 

  23. Walmsley, R.M., Gardner, D.C.J. and Oliver, S.G. 1983. Stability of a cloned gene in yeast grown in chemostat culture. Mol. Gen. Genet. 192: 361–365.

    Article  CAS  PubMed  Google Scholar 

  24. Esener, A.A., Roels, J.A., Kossen, N.W.F. and Roozenburg, J.W.H. 1981. Description of microbial growth behaviour during the wash-out phase; Determination of the maximum specific growth rate. European J. Appl. Microbiol. Biotechnol. 13: 141–144.

    Article  Google Scholar 

  25. Pirt, S.J. 1975. Principles of Microbe and Cell Cultivation. Blackwell Scientific Publications, Oxford.

    Google Scholar 

  26. Brown, S.W., Sugden, D.A. and Oliver, S.G. 1984. Ethanol production and tolerance in grande and petite yeasts. J. Chem. Technol. Biotechnol. 34B: 116–120.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Danhash, N., Gardner, D. & Oliver, S. Heritable Damage to Yeast Caused by Transformation. Nat Biotechnol 9, 179–182 (1991). https://doi.org/10.1038/nbt0291-179

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0291-179

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing