Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Paper
  • Published:

Single Chain Antibody (SCA) Encoding Genes: One-Step Construction and Expression in Eukaryotic Cells

Abstract

We report the expression, in eukaryotic cells, of a gene encoding a single chain antibody (SCA) and a rapid method for the construction of such genes. A SCA directed against the aromatic dye fluorescein was synthesized from a gene constructed by means of the simultaneous use of four PCR primers and templates of both light and heavy chain immunoglobulin cDNAs in the form of either plasmid clones or reverse transcribed hybridoma RNA. Two of the primers were partially complementary to one another and encoded the polypeptide linker which joins the immunoglobulin light and heavy chain variable domains of the SCA polypeptide. A functional, hapten-binding product was synthesized from the gene thus constructed in both E. coli and the fission yeast, Schizosaccharomyces pombe. Our results demonstrate that gene constructs encoding single chain antigen binding proteins can be synthesized very rapidly with only limited sequence information about the pertinent light and heavy chain immunoglobulin genes, and, that neither murine codon usage bias, Thermus aquaticus DNA polymerase infidelity, nor the eukaryotic cellular environment preclude the synthesis of functional single chain antigen binding proteins in non-lymphatic, non-murine eukaryotic cells.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bird, R.E., Hardman, K.D., Jacobson, J.W., Johnson S., Kaufman, B.M., Lee, S.-M., Lee, T., Pope, S.H., Riordan, G.S. and Whitlow, M. 1988. Single-chain antigen-binding proteins. Science 242: 423–426.

    Article  CAS  Google Scholar 

  2. Huston, J.S., Levinson, D., Mudgett-Hunter, M., Tai, M.-S., Novotny, J., Margolies, M.N., Ridge, R.J., Bruccoleri, R.E., Haber, E., Crea, R. and Oppermann, H. 1988. Protein engineering of antibody binding sites: Recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 85: 5879–5883.

    Article  CAS  Google Scholar 

  3. Chaudhary, V.K., Batra, J.K., Gallo, M.G., Willingham, M.C., FitzGerald, D.J. and Pastan, I. 1990. A rapid method of cloning functional variable-region antibody genes in Escherichia coli as single-chain immunotoxins. Proc. Natl. Acad. Sci. USA 87: 1066–1070.

    Article  CAS  Google Scholar 

  4. Horton, R.M., Hunt, H.D., Ho, S.N., Pullen, J.K. and Pease, L.R. 1989. Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene 77 61–68.

    Article  CAS  Google Scholar 

  5. Kranz, D.M., Herron J.N. and Voss,E.W.J. 1982. Mechanisms of ligand binding by monoclonal anti-fluorescyl antibodies. J. Biol. Chem. 257: 6987–6995.

    CAS  PubMed  Google Scholar 

  6. Bedzyk, W.D., Johnson, L.S., Riordan, G.S. and Voss, E.W.J. 1989. Comparison of variable region primary structures within an anti-fluorescein idiotype family. J. Biol. Chem. 264: 1565–1569.

    CAS  PubMed  Google Scholar 

  7. Herron, J.N., He, X.-m., Mason, M.L., Voss, E.W.J. and Edmundson, A.B. 1989. Three-dimensional structure of fluorescein-Fab complex crystallized in 2-methyl-2,4-pentanediol. Proteins 5: 271–280.

    Article  CAS  Google Scholar 

  8. Springer, B.A. and Sligar, S.G. 1987. High-level expression of sperm whale myoglobin Escherichia coll. Proc. Natl. Acad. Sci. USA 84: 8961–8965.

    Article  CAS  Google Scholar 

  9. Hamlyn, P.H., Gait, M.J. and Milstein, C. 1981. Complete sequence of an immunoglobulin mRNA using specific priming and the dideoxy-nucleotide method of RNA sequencing. Nucl. Acids Res. 9: 4485–4494.

    Article  CAS  Google Scholar 

  10. Kaartinen, M., Griffiths, G.M., Hamlyn, P.H., Markham, A.F., Karjalainen, K., Pelkonen, J.L.T., Makela, O. and Milstein, C. 1983. Anti-oxazolone hybridomas and the structure of the oxazolone idiotype. J. Immunol. 130: 937–945.

    CAS  PubMed  Google Scholar 

  11. Janada, K.D., Schloeder, D., Benkovic, S.J. and Lerner, R.A. 1988. Induction of an antibody that catalyzes the hydrolysis of an amide bond. Science 241: 1188–1191.

    Article  Google Scholar 

  12. Leboeuf, R.D., Galin, F.S., Hollinger, S.K., Peiper, S.C. and Blalock, J.E. 1989. Cloning and sequencing of immunoglobulin variable-region genes using degenerate oligodeoxyribonucleotides and the polymerase chain reaction. Gene 82: 371–377.

    Article  CAS  Google Scholar 

  13. Larrick, J.W., Danielsson, L., Brenner, C.A., Wallace, E.F., Abrahamson, M., Fry, K.E. and Borrebaeck, C.A.K. 1989. Polymerase chain reaction using mixed primers: cloning of human monoclonal antibody variable region genes from single hybridoma cells. Bio/Technology 7: 934–938.

    CAS  Google Scholar 

  14. Chiang, Y.L., Sheng-Dong, R., Brow, M.A. and Larrick, J.W. 1989. Directed cDNA cloning of the rearranged immunoglobulin variable region. BioTechniques 7: 360–366.

    CAS  PubMed  Google Scholar 

  15. Orlandi, R., Gussow, D.H., Jones, P.T. and Winter, G. 1989. Cloning immunoglobulin variable domains by the polymerase chain reaction. Proc. Natl. Acad. Sci. USA. 86: 3833–3837.

    Article  CAS  Google Scholar 

  16. Kawasaki, E. . 1989. Amplification of RNA sequences via complementary DNA (cDNA). Amplifications 3: 4–6.

    Google Scholar 

  17. Dumais, M.M. and Nochumson, S. 1987. Small DNA fragment separation and M13 cloning directly in remelted NuSieve GTG agarose gels. BioTechniques 5: 62–67.

    CAS  Google Scholar 

  18. Alexander, D.C. 1987. An efficient vector-primer cDNA cloning system. Meth. Enzymol. 154: 41–64.

    Article  CAS  Google Scholar 

  19. Holmes, D.S. and Quigley, M. 1981. A rapid boiling method for the preparation of bacterial plasmids. Anal. Biochem. 114: 193–197.

    Article  CAS  Google Scholar 

  20. Booher, R. and Beach, D. 1988. Involvement of cdc13+ in mitotic control of Schiwsaccharomyces pombe: possible interaction of the gene product with microtubules. EMBO J. 7: 2321–2327.

    Article  CAS  Google Scholar 

  21. Brokers, M. 1987. Transformation of intact Schizosaccharomyces pombe cells with plasmid DNA. BioTechniques 5: 516–518.

    Google Scholar 

  22. Mitcheson, M. 1970. Physiological and cytological methods for Schizosaccharomyces pombe. p. 131–164. In: Methods in Cell Physiology. Prescott, E. M. (Ed.). Academic Press, New York.

    Google Scholar 

  23. Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.

    Article  CAS  Google Scholar 

  24. Towbin, H., Staehelin, T. and Gordon, J. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA 76: 4350–4354.

    Article  CAS  Google Scholar 

  25. Kranz, D.M. and Voss, E.W.J. 1983. Idiotypic analysis of monoclonal antifluorescyl antibodies: localization and characterization of idiotypic determinants. Molec. Immunol. 20: 1301–1312.

    Article  CAS  Google Scholar 

  26. Kraft,J., Tardiff,J., Krauter, K.S. and Leinwand, L.A. 1988. Using mini-prep plasmid DNA for sequencing double stranded templates with Sequenase. BioTechniques 6: 544–546.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davis, G., Bedzyk, W., Voss, E. et al. Single Chain Antibody (SCA) Encoding Genes: One-Step Construction and Expression in Eukaryotic Cells. Nat Biotechnol 9, 165–169 (1991). https://doi.org/10.1038/nbt0291-165

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0291-165

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing