Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Alzheimer's Disease: Recent Advances in Understanding the Brain Amyloid Deposits

Abstract

The entry of molecular genetics into the field of Alzheimer's disease in the last few years has led to the usual plethora of data that results when any new methodology is applied to an old problem. The information has been of both a positive and negative type. On the positive side, the genes for two components of the Alzheimer amyloid deposits (the β–protein and the protease inhibitor α1–antichymotrypsin) have been identified, one previously unsuspected, and at least some families harboring the inherited form of Alzheimer's disease have been shown to carry their autosomal dominant mutation on chromosome 21. On the negative side, the early hoped–for explanation of familial Alzheimer's disease as a mutation in the β–protein or a triplication of the β–protein gene turned out not to be forthcoming, and the potential heterogeneity of familial Alzheimer's disease indicated by some studies means we still have much genetic work to do. The molecular genetic studies have also provided potential insights into the biochemistry of amyloid formation and into the normal function of the β–protein precursor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

David S. Knopman, Helene Amieva, … David T. Jones

References

  1. Terry, R.D., Hansen, L.A., DeTeresa, R., Davies, P., Tobias, H. et al. 1987. Senile dementia of the Alzheimer type without neocortical neurofibrillary tangles. J. Neuropathol. Exp. Neurol. 46:262–268.

    Article  CAS  PubMed  Google Scholar 

  2. Abraham, C.R., Selkoe, D.J., and Potter, H. 1988. Immunochemical identification of the serine protease inhibitor arantichymotrypsin in the brain amyloid deposits of Alzheimer's disease. Cell 52:487–501.

    Article  CAS  PubMed  Google Scholar 

  3. Wisniewski, H.M., Rabe, A., and Wisniewski, K.E. 1988. Neuropathology and dementia in people with Down's syndrome, p. 399–413. In: Molecular Neuropathology of Aging. Banbury Report. P. Davies, C. Finch (Eds.). New York: Cold Spring Harbor Laboratory.

    Google Scholar 

  4. Selkoe, D.J., Ihara, Y., and Salazar, F.J. (1982). Alzheimer's disease: insolubility of partially purified helical filaments in sodium dodecyl sulfate and urea. Science 115:1243–1245.

    Article  Google Scholar 

  5. Ihara, Y., Abraham, C.R., and Selkoe, D.J. 1983. Antibodies to paired helical filaments in Alzheimer's disease do not recognize normal brain proteins. Nature 304:727–730.

    Article  CAS  PubMed  Google Scholar 

  6. Glenner, G.G. and Wong, C.W. 1984. Alzheimer's disease: initial report of the purification and characterization of a novel cerebrovas-cular amyloid protein. Biochem. Biophys. Res. Commun. 122:885–890.

    Article  Google Scholar 

  7. Masters, C.L., Multhaup, G., Simms, G., Pottgieser, J., Martins, R.N., and Beyreuther, K. 1985. Neuronal origin of a cerebral amyloid: neurofibrillary tangles of Alzheimer's disease contain the same protein as the amyloid of plaque cores and blood vessels. EMBO J. 4:2757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wong, C.W., Quaranta, V., and Glenner, G.G. 1985. Neuritic plaques and cerebrovascular amyloid in Alzheimer disease are anti-genically related. Proc. Nat. Acad. Sci. USA 82:8729–8732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Selkoe, D.J., Abraham, C.R., Podlisny, M.B., and Duffy, L.K. 1986. Isolation of low-molecular weight proteins from amyloid plaque fibers in Alzheimer's disease. J. Neurochem. 46:1820–1834.

    Article  CAS  PubMed  Google Scholar 

  10. Goldgaber, D., Lerman, M.J., McBride, O.W., Safnotti, V., and Gadjusek, D.C. 1987. Characterization and chromosomal localization of a cDNA encoding brain amyloid of Alzheimer's disease. Science 235:877.

    Article  CAS  PubMed  Google Scholar 

  11. Kang, J., Lemaire, H.G., Unterback, A., Salbaum, J.M., Masters, C.L., Grezeschik, K.H., Multhaup, G., Beyreuther, K., and Muller-Hill, B. 1987. The precursor of Alzheimer disease amyloid A4 protein resembles a cell-surface receptor. Nature 325:733.

    Article  CAS  PubMed  Google Scholar 

  12. Tanzi, R.E., Gusella, J.F., Watkins, P.C., Bruns, G.A.P., St. George-Hyslop, P., Van Keuren, M.L., Patterson, D., Pajan, S., Kurnit, D.M., and Neve, R.L. 1987. Amyloid β-protein gene; cDNA, mRNA distributions, and genetic linkage near the Alzheimer locus. Science 235:880.

    Article  CAS  PubMed  Google Scholar 

  13. Robakis, N.K., Ramakrishna, N., Wolfe, G., and Wisniewski, H.M. 1987. Molecular cloning and characterization of a cDNA encoding the cerebrovascular and the neuritic plaque amyloid peptides. Proc. Natl. Acad. Sci. USA 84:4190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Selkoe, D.J., Podlisny, M.B., Joachim, C.L., Vickers, E.A., Lee, G., Fritz, L.C., and Oltersdorf, T. 1988. β-amyloid precursor protein of Alzheimer disease occurs as 110- to 135-kiloDalton membrane-associated proteins in neural and nonneural tissues. Proc. Natl. Acad. Sci. USA 85:7341–7345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tabaton, M., Morandi, A., Masters, C., Beyreuther, K., Perry, G., Gambetti, P., and Autilio-Gambetti, L. 1988. Immunoreactivity of fibroblasts from Alzheimer, Down and control cases with an antiserum to amyloid (A4) synthetic peptide. J. Neuropathol. Exp. Neurol. 47:336.

    Google Scholar 

  16. Palmert, M.R., Podlisny, M.B., Witker, D.S., Oltersdorf, T., Younkin, L.H., Selkoe, D.J., and Younkin, S.G. 1988. Antisera to an aminoterminal peptide detect the amyloid protein precursor of Alzheimer's disease and recognize senile plaques. Biochem. Biophys. Res. Comm. 156:432–437.

    Article  CAS  PubMed  Google Scholar 

  17. Palmert, M.R., Podlisny, M.B., Witker, D.S., Oltersdorf, T., Younkin, L.H., Schenk, D.B., Selkoe, D.J., and Younkin, S.G. 1988. The β amyloid protein precursor has soluble derivatives that are present in the cerebrospinal fluid of patients with Alzheimer's disease. Submitted for publication.

  18. Card, J.P., Meade, R.P., and Davis, L.G. 1988. Immunocytochemical localization of the precursor protein for β-amyloid in the rat central nervous system. Neuron 1:835–846.

    Article  CAS  PubMed  Google Scholar 

  19. Weidemann, A., König, G., Bunke, D., Fischer, P., Master, C.L., and Beyreuther, K. 1989. Identification, biogenesis and localization of precursors of Alzheimer's disease A4 amyloid protein. Submitted.

  20. Dyrks, T., Weidemann, A., Multhaup, G., Salbaum, J.M., Lemaire, H.-G., Kang, J., Muller-Hill, B., Masters, C.L., and Beyreuther, K. 1988. Identification, transmembrane orientation and biogenesis of the amyloid A4 precursor of Alzheimer's disease. EMBO J. 7:949–957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Goedert, M. 1987. Neuronal localization of amyloid beta protein precursor mRNA in normal human brain and in Alzheimer's disease. EMBO J. 6:3627–3632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bahmanyar, S., Higgins, G.A., Goldgaber, D., Lewis, D.A., Morrison, J.H., Wilson, M.C., Shankar, S.K., and Gajdusek, D.C. 1987. Localization of amyloid 3 protein messenger RNA in brains from patients with Alzheimer's disease. Science 237:77–80.

    Article  CAS  PubMed  Google Scholar 

  23. Cohen, M.L., Golde, T.E., Usiak, M.F., Younkin, L.H., and Younkin, S.G. 1988. In situ hybridization of nucleus basalis neurons shows increased p-amyloid mRNA in Alzheimer disease. Proc. Natl. Acad. Sci. USA 85:1227–1231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Higgins, G.A., Lewis, D.A., Bahmanyar, S., Goldgaber, D., Gajdusek, D.C., Young, W.G., Morrison, J.H., and Wilson, M.C. 1988. Differential regulation of amyloid- β-protein mRNA expression within hippocampal neuronal subpopulations in Alzheimer disease. Proc. Natl. Acad. Sci. USA 85:1297–1301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ponte, P., Gonzalez-DeWhitt, P., Schilling, J., Miller, J., Hsu, D., Greenberg, B., Davis, K., Wallace, W., Lieberburg, I., Fuller, F., and Cordell, B. 1988. A new A4 amyloid mRNA contains a domain homologous to serine protease inhibitors. Nature 331:525–527.

    Article  CAS  PubMed  Google Scholar 

  26. Tanzi, R.E., McClatchey, A.I., Lamberti, E.D., Villa-Komaroff, L., Gusella, J.F., and Neve, R.L. 1988. Protease inhibitor domain encoded by an amyloid protein precursor mRNA associated with Alzheimer's disease. Nature 331:528–530.

    Article  CAS  PubMed  Google Scholar 

  27. Kitaguchi, N., Takahashi, Y., Tokushima, Y., Shiojiri, S., and Ito, H. 1988. Novel precursor of Alzheimer's disease amyloid protein shows protease inhibitory activity. Nature 331:530–532.

    Article  CAS  PubMed  Google Scholar 

  28. Palmert, M.R., Golde, T.E., Cohen, M.L., Kovacs, D.M., Tanzi, R.E., Gusella, J.F., Usiak, M.F., Younkin, L.H., and Younkin, S.G. 1988. Amyloid protein precursor messenger RNAs: differential expression in Alzheimer's disease. Science 241:1080–1084.

    Article  CAS  PubMed  Google Scholar 

  29. Neve, R.L., Finch, E.A., and Dawes, L.R. 1988. Expression of the Alzheimer amyloid precursor gene transcripts in the human brain. Neuron 1:669–677.

    Article  CAS  PubMed  Google Scholar 

  30. Johnson, S.A., Paginetti, G.M., and Finch, C.E. 1988. Reduction of APP-695 beta amyloid transcript prevalence in Alzheimer disease cortex. Soc. Neurosci. Abstr. 14:895.

    Google Scholar 

  31. Schubert, D., Schroeder, R., LaCorbiere, M., Saitoh, T., and Cole, G. 1988. Amyloid β protein precursor is possibly a heparan sulfate proteoglycan core protein. Science 241:223–226.

    Article  CAS  PubMed  Google Scholar 

  32. Wisniewski, H.M. and Terry, R. D. 1973. Morphology of the aging brain, human and animal, p. 1108–1109. In: Progress in Brain Research, Vol. 40, Neurobiological Aspects of Maturation and Aging. D. H. Ford (Ed.). Amsterdam: Elsevier.

    Google Scholar 

  33. Struble, R.G., Price, D.L. Jr., Cork, L.C. and Price, D.L. 1985. Senile plaques in cortex of aged normal monkeys. Brain Res. 361:267–275.

    Article  CAS  PubMed  Google Scholar 

  34. Selkoe, D.J., Bell, D.S., Podlisny, M.B., Price, D.L., and Cork, L.C. 1987. Conservation of brain amyloid proteins in aged mammals and humans with Alzheimer's disease. Science 235:873–877.

    Article  CAS  PubMed  Google Scholar 

  35. Abraham, C.R., Selkoe, D.J., Potter, H., Price, D.L., and Cork, L.C. 1988. α1-antichymotrypsin: age-related co-localization with the β-protein in monkey brain amyloid deposits. Submitted for publication.

  36. Mandybur, T.I. 1975. The incidence of cerebral amyloid angiopathy in Alzheimer's disease. Neurology 25:120–126.

    Article  CAS  PubMed  Google Scholar 

  37. Tomonoga, M. 1981. Cerebral amyloid angiopathy in the elderly. J. Amer. Geriatr. Soc. 29:151–157.

    Article  Google Scholar 

  38. Joachim, C.L., Duffy, L.K., Morris, J., and Selkoe, D.J. 1988. Protein chemical and immunocytochemical studies of meningovascular β-amyloid protein in Alzheimer's disease and normal aging. Brain Res., in press.

  39. Justice, D.L., Rhodes, R.H., and Tokes, Z.A. 1987. Immunohis-tochemical demonstration of proteinase inhibitor α1-antichymotrypsin in normal human central nervous system. J. Cell. Biochem. 34:227–238.

    Article  CAS  PubMed  Google Scholar 

  40. Feldman, R.G., Chandler, K.A., Levy, L., and Glaser, G.H. 1963. Familial Alzheimer's disease. Neurology 13:811–824.

    Article  CAS  PubMed  Google Scholar 

  41. Heston, L.L., Mastri, A.R., Anderson, V.E., and White, J. 1981. Dementia of the Alzheimer type. Clinical genetics, natural history, and associated conditions. Arch. Gen. Psychiat. 38:1084–1090.

    Article  Google Scholar 

  42. Matsuyama, S.S., Jarvik, L.F. and Kumar, V. 1985. Dementia: genetics, In: Recent Advances in Psychogeriatries. T. Arie (Ed,). Edinburgh, Churchill-Livingstone.

    Google Scholar 

  43. Jarvik, L.F. and Matsuyama, S.S. 1986. Dementia of the Alzheimer type: genetic aspects, p. 17–20. In: The Biological Substrates of Alzheimer's Disease. A. B. Scheibel and A. F. Wechslev (Eds.). Orlando, Florida: Academic Press.

    Google Scholar 

  44. Terry, R.D. 1978. Aging, senile dementia and Alzheimer's disease. Aging 7 11–14.

  45. Terry, R.D. 1978. Ultrastructural alterations in senile dementia. Aging 7:377–382.

    Google Scholar 

  46. McKahnn, G., Drachman, D., Folstein, M., Katzman, R., and Price, D. 1984. Clinical diagnosis of Alzheimer's disease. Neurology 34:939–944.

    Article  Google Scholar 

  47. St George-Hyslop, P.H., Tanzi, R.E., Polinsky, R.J., Raines, J.L., Nee, L. et al. 1987. The genetic defect causing familial Alzheimer's disease maps on chromosome 21. Science 235:885–889.

    Article  CAS  PubMed  Google Scholar 

  48. Jervis, G.A. 1948. Early senile dementia in mongoloid idiocy. Am J. Psychiat. 105:102–106.

    Article  CAS  PubMed  Google Scholar 

  49. Burger, P.C. and Vogel, F.S. 1973. The development of the pathological changes of Alzheimer's disease and senile dementia in patients with Down's syndrome. Am. J. Pathol. 73:457–476.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Whalley, L.J. and Buckton, K.E. 1979. Genetic factors in Alzheimer's disease, p. 36–41. In: Alzheimer's Disease: Early Recognition of Potentially Reversible Deficits. A. I. M. Glen, L.J. Whalley (Eds.). Edinburgh: Churchill-Livingstone.

    Google Scholar 

  51. Tanzi, R.E., St George-Hyslop, P.H., Haines, J.L., Polinsky, R.J., Nee, L., Foncin, J.-F., Neve, R.L., McClatchey, A.I., Conneally, P.N., and Gusella, J.F. 1987. The genetic defect in familial Alzheimer's disease is not tightly linked to the amyloid β-protein gene. Nature 329:156–157.

    Article  CAS  PubMed  Google Scholar 

  52. Korenberg, J.R. West, R., and Pulst, S.-M. 1988. The Alzheimer protein precursor gene maps to chromosome 21 sub-bands q21.15-q21.2. Neurology 38(Suppl.1):265.

    Article  Google Scholar 

  53. Van Broekhoven, C., Genthe, A.M., Vandenberghe, A., Horsthemke, B., Backhovens, H., et al. 1987. Failure of familial Alzheimer's disease to segregate with the A4-amyloid gene in several European families. Nature 329:153–155.

    Article  Google Scholar 

  54. Schellenberg, G.D., Bird, T.D., Wijsman, E.M., Moore, D.K., Boehnke, M., Bryant, E.M., Lampe, T.H., Nochlin, D., Sumi, S.M., Deep, S.S., Beyreuther, K., and Martin, G.M. 1988. Absence of linkage of chromosome 21q21 markers to familial Alzheimer's disease. Science 241:1507–1510.

    Article  CAS  PubMed  Google Scholar 

  55. Travis, J. and Salvesen, G.S. 1983. Human plasma proteinase inhibitors. Ann. Rev. Biochem. 52:655–709.

    Article  CAS  PubMed  Google Scholar 

  56. Pittman, R.N. 1984. Neuron-target cell interactions may involve protease-inhibitor interactions. Soc. Neurosci. Abstr. 10:662.

    Google Scholar 

  57. Pittman, R.N. 1985. Release of plasminogen activator and a calcium-dependent metalloprotease from cultured sympathetic and sensory neurons. Dev. Biol. 110:91–101.

    Article  CAS  PubMed  Google Scholar 

  58. Krystosek, A. and Seeds, N.W. 1984. Peripheral neurons and Schwann cells secrete plasminogen activator. J. Cell. Biol. 98:773–776.

    Article  CAS  PubMed  Google Scholar 

  59. Pittman, R.N. and Patterson, P.H. 1987. Characterization of an inhibitor of neuronal plasminogen activator released by heart cells. J. Neurosci. 7:2664–2673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kalderon, N. 1984. Schwann cell proliferation and localized proteolysis: expression of plasminogen-activator activity predominates in the proliferating cell populations. Proc. Natl. Acad. Sci. USA 81:7216–7220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Monard, D., Niday, E., Limat, A., and Solomon, F. 1983. Inhibition of protease activity can lead to neurite extension in neuroblastoma cells. Prog. Brain Res. 58:359–364.

    Article  CAS  PubMed  Google Scholar 

  62. Guenther, J., Nick, H., and Monard, D. 1985. A glia-derived neurite-promoting factor with protease inhibitory activity. EMBO J. 4:1963–1966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gloor, S., Odink, K., Guenther, J., Nick, H., and Monard, D. 1986. A glia-derived neurite-promoting factor with protease inhibitory activity belongs to the protease nexins. Cell 47:687–693.

    Article  CAS  PubMed  Google Scholar 

  64. Probst, A., Basler, V., Bron, B., and Ulrich, J. 1983. Neuritic plaques in senile dementia of Alzheimer type: a Golgi analysis in the hippo-campal region. Brian Res. 268:249–254.

    Article  CAS  Google Scholar 

  65. Geddes, J.W., Monaghan, D.T., Cotman, C.W., Lott, I.T., Kim, R.C., and Chui, H.C. 1985. Plasticity of hippocampal circuitry in Alzheimer's disease. Science 230:1179–1181.

    Article  CAS  PubMed  Google Scholar 

  66. Travis, J., Bowen, J., and Baugh, R. 1978. Human α1-antichymotrypsin: interaction with chymotrypsin-like proteinases. Biochemistry 17:5651–5656.

    Article  CAS  PubMed  Google Scholar 

  67. Castano, E.M. and Frangione, B. 1988. Biology of disease: Human amyloidosis, Alzheimer disease and related disorders. Lab. Invest. 58:122–132.

    CAS  PubMed  Google Scholar 

  68. Abraham, C.R., Shiraham, T. and Potter, H. (1989). The protease inhibitor α1-antichymotrypsin is associated solely with amyloid deposits containing the β-protein and is localized in specific cells of both normal and diseased brain. Submitted for publication.

  69. Picken, M.M., Coria, F., Larrondo-Lillo, M., Gallow, G.R., Shelanski, M.L. and Frangione, B. (1989). Distribution of the protease inhibitor arantichymotrypsin in cerebral and systematic amyloid. Submitted for publication.

  70. Baumann, H., Jahreis, G.P., Sauder, D.N. and Koj, A. (1984). Human keratinocytes and monocytes release factors which regulate the synthesis of major acute-phase plasma proteins in hepatic cells from man, rat and mouse. J. Biol. Chem. 259:7331.

    CAS  PubMed  Google Scholar 

  71. Baumann, H., Richards, C. and Gauldie, J. (1987). Interaction among hepatocyte-stimulating factors, interleukin 1, and glucocorticoids for regulation of acute phase plasma proteins in human hepatoma (HepG2) cells. J. Immunol. 139:4122–4128.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abraham, C., Potter, H. Alzheimer's Disease: Recent Advances in Understanding the Brain Amyloid Deposits. Nat Biotechnol 7, 147–153 (1989). https://doi.org/10.1038/nbt0289-147

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0289-147

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing