Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Paper
  • Published:

Meristematic Tissues of Maize Plants Are Most Susceptible to Agroinfection With Maize Streak Virus

Abstract

The region of whole Zea mays plants most susceptible to Agrobacterium–mediated transfer of infectious maize streak virus has been identified. Injection of a suspension of bacterial cells in meristematic tissues at or close to the apex gives a high proportion of plants showing viral symptoms, whereas inoculations in non–meri–stematic tissues give few or no symptomatic plants. We have developed a simple, reliable, sensitive and rapid assay for the transfer of DNA from Agrobacterium to plant, which allows a large number of independent inoculations to be screened.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Gheysen, G., Dhaese, P., Van Montagu, M., and Schell, J. 1985. DNA flux across genetic barriers: the crown gall phenomenon, p. 11–47. In: Genetic Flux in Plants. Hohn, B., and Dennis, E. S., (Eds. ). Springer, New York and Vienna.

    Chapter  Google Scholar 

  2. Fraley, R.T., Rogers, S.G., and Horsch, R.B. 1986. Genetic transformation in higher plants. CRC Critical Rev. in Plant Sci. 4:1–46.

    Article  CAS  Google Scholar 

  3. Koukolíková-Nicola, Z., Albright, L., and Hohn, B. 1987. The mechanism of T-DNA transfer from Agrobacterium tumefaciens to the plant cell, p. 109–148. In: Plant DNA Infectious Agents. Hohn, T., and Schell, J. (Eds.). Springer, New York and Vienna.

    Chapter  Google Scholar 

  4. De Cleene, M. 1985. The susceptibility of monocotyledons to Agrobacterium tumefaciens. Phytopath. Z. 113:81–89.

    Article  Google Scholar 

  5. Hernalsteens, J.P., Thia-Toong, L., Schell, J., and Van Montagu, M. 1984. An Agrobacterium-transformed cell culture from the monocot Asparagus officinalis. EMBO J. 3:3039–3042.

    Article  CAS  Google Scholar 

  6. Hooykaas-Van Slogteren, G.M.S., Hooykaas, P.J.J., and Schilperoort, R.A. 1984. Expression of Ti-plasmid genes in monocotyledonous plants infected with Agrobacterium tumefaciens. Nature 311:763–764.

    Article  CAS  Google Scholar 

  7. Graves, A.C.F., and Goldman, S.L. 1986. The transformation of Zeamays seedlings with Agrobacterium tumefaciens. Plant molec. Biol. 7:43–50.

    Article  CAS  Google Scholar 

  8. Graves, A.C.F., and Goldman, S.L. 1987. Agrobacterium tumefaciens-mediated transformation of the monocot genus Gladiolus: detection of expression of T-DNA encoded genes. J. Bacteriol. 169:1745–1746.

    Article  CAS  Google Scholar 

  9. Schäfer, W., Görz, A., and Kahl, G. 1987. T-DNA integration and expression in a monocot crop plant after induction of Agrobacterium. Nature 327:529–532.

    Article  Google Scholar 

  10. Bytebier, B., Deboeck, F., De Greve, H., Van Montagu, M., and Hernalsteens, J.-P. 1987. T-DNA organization in tumor cultures and transgenic plants of the monocotyledon Asparagus officinalis. Proc. Natl. Acad. Sci. U.S.A. 84:5345–5349.

    Article  CAS  Google Scholar 

  11. Christou, P., Platt, S.G., and Ackerman, M.C. 1986. Opine synthesis in wild-type plant tissue. Plant Physiol. 82:218–221.

    Article  CAS  Google Scholar 

  12. Grimsley, N.H., Hohn, B., Hohn, T., and Walden, R.M. 1986. Agroinfection, an alternative route for plant viral infection by using the Ti-plasmid. Proc. Natl. Acad. Sci. USA. 83:3282–3286.

    Article  CAS  Google Scholar 

  13. Grimsley, N.H., and Bisaro, D. 1987. Agroinfection, p. 87–107. In: Plant DNA Infectious Agents. Hohn, T., and Schell, J. (Eds). Springer, New York and Vienna.

    Chapter  Google Scholar 

  14. Grimsley, N.H., Hohn, T., Davies, J.W., and Hohn, B. 1987. Agrobacterium-mediated delivery of infectious maize streak virus into maize plants. Nature 325:177–179.

    Article  CAS  Google Scholar 

  15. Hohn, B., Hohn, T., Boulton, M.I., Davies, J.W., and Grimsley, N.H. 1987. In: Plant Molecular Biology 1987. Von Wettstein, D. and Chua, N.-H. (Eds.). Plenum, New York.

    Google Scholar 

  16. Hoekema, A., Hirsch, P.R., Hooykaas, P.J.J., and Schilperoort, R.A. 1983. A binary plant vector strategy based on separation of the vir, and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303:179–181.

    Article  CAS  Google Scholar 

  17. Zambryski, P., Joos, H., Leemans, J., Van Montagu, M., and Schell, J. 1983. Ti plasmid vector for the introduction of DNA into plant cells without alteration of their normal regeneration capacity. EMBO J. 2:2143–2150.

    Article  CAS  Google Scholar 

  18. Baba, A., Hasezawa, S., and Syono, K. 1986. Cultivation of rice protoplasts and their transformation mediated by Agrobacterium spheroplasts. Plant Cell Physiol. 27:463–471.

    CAS  Google Scholar 

  19. Potrykus, I., Saul, M.W., Petruska, J., and Shillito, R.D. 1985. Direct gene transfer to cells of a graminaceous monocot. Molec. gen. Genet. 199:183–188.

    Article  CAS  Google Scholar 

  20. Lörz, H., Baker, B., and Schell, J. 1985. Gene transfer to cereal cells mediated by protoplast transformation. Molec. gen. Genet. 199:178–182.

    Article  Google Scholar 

  21. Fromm, M.E., Taylor, L.P., and Walbot 1986. Stable transformation of maize after gene transfer by electroporation. Nature 319:719–793.

    Article  Google Scholar 

  22. Uchimiya, H., Fushimi, T., Hashimoto, H., Harada, H., Syono, K., and Sugawara, Y. 1986. Expression of a foreign gene in callus derived from DNA-treated protoplasts of rice (Oryza saliva L.) Molec. gen. Genet. 204:204–207.

    Article  CAS  Google Scholar 

  23. Abdullah, R., Cocking, E.C., and Thompson, J.A. 1986. Efficient plant regeneration from rice protoplasts through somatic embryogen-esis. Bio/Technology 4:1087–1090.

    Google Scholar 

  24. Yamada, Y., Zhi-Qi, Y., and Ding-Tai, T. 1986. Plant regeneration from protoplast-derived callus of rice (Oryza saliva L.). Plant Cell Reports 5:85–88.

    Article  CAS  Google Scholar 

  25. Kyozuka, J., Hayashi, Y., and Shimamoto, K. 1987. High frequency plant regeneration from rice protoplasts by novel nurse culture methods. Molec. gen. Genet. 206:408–413.

    Article  CAS  Google Scholar 

  26. De la Peña, A., Lörz, H., and Schell, J. 1987. Transgenic rye plants obtained by injecting DNA into young floral tillers. Nature 325:274–276.

    Article  Google Scholar 

  27. Davies, J.W., Townsend, R., and Stanley, J. 1987. The structure, expression, functions and possible exploitation of geminivirus genomes, p. 31–52. In: Plant DNA Infectious Agents. Hohn, T., and Schell, J. (Eds.). Springer, New York and Vienna.

    Chapter  Google Scholar 

  28. Maniatis, T., Fritsch, E.F., and Sambrook, J. 1982. Molecular Cloning. A Laboratory Manual. Cold Spring Harbor Laboratory Press, N. Y.

    Google Scholar 

  29. Holsters, M., Silva, B., Van Vliet, F. et al. 1980. The functional organization of the nopaline A. tumefaciens plasmid. Plasmid 3:212–230.

    Article  CAS  Google Scholar 

  30. Rogers, S.G., Horsch, R.B., and Fraley, R.T. 1986. Gene transfer in plants: Production of transformed plants using Ti-plasmid vectors. Meth. Enzymol. 118:627–640.

    Article  CAS  Google Scholar 

  31. Sass, J.E. 1958. Botanical Microtechnique, p 14–54. The Iowa State University Press, Ames, Iowa.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grimsley, N., Ramos, C., Hein, T. et al. Meristematic Tissues of Maize Plants Are Most Susceptible to Agroinfection With Maize Streak Virus. Nat Biotechnol 6, 185–189 (1988). https://doi.org/10.1038/nbt0288-185

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0288-185

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing