Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cloning Systems in Amino Acid–Producing Corynebacteria

Abstract

Members of the genera Corynebacterium and Brevibacterium are widely used in the production of amino acids and nucleotides, as well as in the bioconversion of steroids and in the cheese industry. In the last few years, cloning vectors have been developed in corynebacteria using replicons from endogenous plasmids and antibiotic resistance genes as selectable markers. Promoter–probe plasmids, high–expression vectors, transposon mutagenesis, and in vitro systems for RNA and protein synthesis are now being developed. The availability of cloned genes and transformation and transfection systems in corynebacteria will facilitate gene amplification studies, and the removal of bottlenecks in the amino acid biosynthetic pathways, thus leading to increased production of amino acids.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bousfield, I.J. and Callely, A.G. (eds.). 1987. Coryneform bacteria. Academic Press, London.

    Google Scholar 

  2. Barksdale, L. 1981. In: The Prokaryotes, 1827–1837. M.P. Starr, H. Stolp., H.C. Truper, A. Balous, and H.G. Schlegel, (eds.), Springer Verlag, New York.

    Google Scholar 

  3. Vidaver, A.K. 1982. The plant pathogenic corynebacteria. Ann. Rev. Microbiol. 36: 495–517.

    Article  CAS  Google Scholar 

  4. Carlson, R.R. and Vidaver, A.K. 1982. Taxonomy of corynebacterium plant pathogens including a new pathogen of wheat, based on polyacrylamide gel electrophoresis of cellular proteins. Int. J. Syst. Bacteriol. 32: 315–326.

    Article  CAS  Google Scholar 

  5. Pappenheimer, A.M. Jr. 1977. Diphtheria toxin. Ann. Rev. Biochem. 46: 69–94.

    Article  CAS  PubMed  Google Scholar 

  6. Yamada, K., Kinoshita, S., Tsunoda, T. and Aida, K. 1972. The Microbial Production of Amino Acids. Wiley, New York.

  7. Tosaka, O., Enei, H., and Hirose, Y. 1983. The production of L-lysine by fermentation. Trends. Biotechnol. 1: 70–76.

    Article  CAS  Google Scholar 

  8. Yoshinaga, F. and Nakamori, S. 1983. Production of amino acids, 405–429. In: Amino acids: Biosynthesis and genetic regulation, K.M. Herrmann and R.L. Somerville (eds.). Addison Wesley Publishing Co., Reading, Mass.

    Google Scholar 

  9. Ogata, K., Kinoshita, S., Tsunoda, T. and Aida, K. 1976. Microbial Production Of Nucleic Acid Related Substances. Wiley, New York.

  10. Abe, S., Takayama, K. and Kinoshita, S. 1967. Taxonomical studies on glutamic acid-producing bacteria. J. Gen. Appl. Microbiol. 13: 279–301.

    Article  Google Scholar 

  11. Lee, C.W., Lucas, S. and Desomazeaud, M.J. 1985. Phenylalanine and tyrosine catabolism in some cheese coryneform bacteria. FEMS Microbiol. Lett. 26: 201–205.

    Article  CAS  Google Scholar 

  12. Anderson, S., Marks, C.B., Lazarus, R., Miller, J., Stafford, K., Seymour, S., Light, D., Rastetter, W., Estell, D. 1985. Production of 2-keto-L-gluconate, an intermediate in L-ascorbate synthesis by a genetically modified Erwinia herbicola. Science 230: 144–149.

    Article  CAS  PubMed  Google Scholar 

  13. Constantinides, A. 1980. Steroid transformation at high substrate concentrations using immobilized Corynebacterium simplex cells. Biotechnol. Bioeng. 22: 119–136.

    Article  CAS  PubMed  Google Scholar 

  14. Yamada, Y., Won Seo, C. and Okada, H. 1985. Oxidation of acyclic terpenoids by Corynebacterium Sp. Appl. Environm. Microbiol. 49: 960–963.

    Article  CAS  Google Scholar 

  15. Suzuki, T., Honda, H. and Katsumata, R. 1972. Production of antibacterial compounds analogous to chloramphenicol by n-paraffin-grown bacteria. Agr. Biol. Chem. 36: 2223–2228.

    Article  CAS  Google Scholar 

  16. Milas, L. and Scott, M.T. 1978. Antitumor activity of Corynebacterium parvum. Adv. Cancer Res. 26: 257–306.

    Article  CAS  PubMed  Google Scholar 

  17. Cardini, G. and Jurtshuk, P. 1970. The enzymatic hydroxylation of n-octane by Corynebacterium sp. strain 7EC1C. J. Biol. Chem. 245: 2789–2796.

    Article  CAS  PubMed  Google Scholar 

  18. Cooper, D.G., Zajic, J.E. and Gracey, D.E.F. 1979. Analysis of corynomycolic acids and other fatty acids produced by Corynebacterium lepus grown on kerosene. J. Bacteriol. 137: 795–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Duvnjak, Z. and Kosaric, N. 1981. Release of surfactant from Corynebacterium lepus with alkenes. Biotechnol. Lett. 3: 583–588.

    Article  CAS  Google Scholar 

  20. Zajic, J.E., Guignard, H. and Gerson, D.F. 1977. Emulsifying and surface active agents from Corynebacterium hydrocarboclastum. Biotechnol. Bioeng. 19: 1295–1301.

    Google Scholar 

  21. Crombach, W.H.J. 1978. DNA base ratios and DNA hybridization studies of coryneform bacteria, mycobacteria and nocardiae, 161–179. In: Coryneform Bacteria. I.J., Bousfield and A.G. Callely (ed.). Academic Press, London.

    Google Scholar 

  22. Bak, A.L., Christiansen, C. and Stenderup, A. 1970. Bacterial genome sizes determined by DNA renaturation studies. J. Gen. Microbiol. 64: 377–380.

    Article  CAS  PubMed  Google Scholar 

  23. Benigni, R., Antonov, R.P. and Carere, A. 1975. Estimate of the genome size by renaturation studies in Streptomyces. Appl. Microbiol. 30: 324–326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Goodfellow, M., Weaver, C.R. and Minnikin, D.E. 1982. Numerical classification of some rhodococci, corynebacteria and related organisms. J. Gen. Microbiol. 128: 731–745.

    CAS  PubMed  Google Scholar 

  25. Suzuki, K., Kaneko, T. and Komagata, K. 1981. Deoxyribonucleic acid homologies among coryneform bacteria. Int. J. Syst. Bacteriol. 31: 131–138.

    Article  Google Scholar 

  26. Pitcher, D.G. 1983. Deoxyribonucleic acid base composition of Corynebacterium diphtheriae and corynebacteria with cell wall type IV. FEMS Microbiol. Lett. 16: 291–295.

    Article  CAS  Google Scholar 

  27. Goodfellow, M., Collins, M.D., Minnikin, D.E. 1976. Thin layer chromatographic analysis of mycolic acid and other long-chain components in whole-organism methanolysates of coryneform and related taxa. J. Gen. Microbiol. 96: 351–358.

    Article  CAS  PubMed  Google Scholar 

  28. Howe, E.E., Jansen, G.R. and Gilfillan, E.W. 1965. Amino acid supplementation of cereal grains as related to the world food supply. Am. J. Clin. Nutr. 16: 315–320.

    Article  CAS  PubMed  Google Scholar 

  29. Itoh, T., Toki, K., Chibata, I. and Yoshida, R. 1974. Utilization of amino acids, p. 243–302. In: Synthetic production of amino acids. T., Kaneko, Y., Izumi, I., Chibata T., Itoh. (eds.). Kodansha Ltd., Tokyo. Chibata.

    Google Scholar 

  30. Batt, C.A., Follettie, M.T., Shin, H.K., Yeh, P. and Sinskey, A.J. 1985. Genetic engineering of coryneform bacteria. Trends Biotechnol. 3: 305–310.

    Article  CAS  Google Scholar 

  31. Shiio, I. 1983. Biochemical conditions for amino acid overproduction, p. 242–246. In: Genetics of industrial microorganisms. I., Ikeda, T., Beppu. (eds.). Kodansha Ltd., Tokyo.

    Google Scholar 

  32. Hofschneider, P.H. and Goebel, W. 1982. Gene cloning in organisms other than E. coli. Springer-Verlag, Berlin.

  33. Martín, J.F. and Gil, J.A. 1984. Cloning and expression of antibiotic production genes. Bio/Technology 2: 63–72.

    Google Scholar 

  34. Sandoval, H., Del Real, G., Mateos, L.M., Aguilar, A. and Martín, J.F. 1985. Screening of plasmids in non-pathogenic corynebacteria. FEMS Microbiol. Lett. 27: 93–98.

    Article  CAS  Google Scholar 

  35. Miwa, K., Matsui, H., Terabe, M., Nakamori, S., Sano, K. and Momose, H. 1984. Cryptic plasmids in glutamic acid-producing bacteria. Agr. Biol. Chem. 48: 2901–2903.

    CAS  Google Scholar 

  36. Yoshihama, M., Higashiro, K., Rao, E.A., Akedo, M., Shanabruch, W.G., Follettie, M.T., Walker, G.C. and Sinskey, A.J. 1985. Cloning vector system for Corynebacterium glutamicum. Journal Bacteriol. 162: 591–597.

    Article  CAS  Google Scholar 

  37. Kono, M., Sasatsu, M. and Aoki, T. 1983. R plasmids in Corynebacterium xerosis strains. Antimicrob. Ag. Chemoter. 23: 506–508.

    Article  CAS  Google Scholar 

  38. Schiller, J., Strom, M., Groman, N. and Coyle, M. 1983. Relationship between pNG2 and Emr plasmid in Corynebacterium diphtheriae, and plasmids in aerobic skin coryneforms. Antimicrob. Ag. Chemother. 24: 892–901.

    Article  CAS  Google Scholar 

  39. Katsumata, R., Ozaki, A., Oka, T. and Furuya, A. 1984. Protoplast transformation of glutamate-producing bacteria with plasmid DNA. J. Bacteriol. 159: 306–311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hendrick, C.A., Haskins, W.P. and Vidaver, A.K. 1984. Conjugative plasmid in Corynebacterium flaccumfaciens subsp. oortii that confers resistance to arsenite, arsenate and antimony (III). Appl. Environ. Microbiol. 48: 56–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kerry-Williams, S.M. and Noble, W.C. 1984. Plasmid associated bacteriocin production in a JK-type coryneform bacterium. FEMS Microbiol. Lett. 25: 179–182.

    Article  CAS  Google Scholar 

  42. Brandsch, R., Hinkkanen, E.A. and Decker, K. 1982. Plasmid mediated nicotine degradation in Arthrobacter oxidans. Arch. Microbiol. 132: 26–30.

    Article  CAS  Google Scholar 

  43. Sandoval, H., Aguilar, A., Paniagua, C. and Martín, J.F. 1984. Isolation and physical characterization of plasmid pCC1 from Corynebacterium callunae and construction of hybrid derivatives. Appl. Microbiol. Biotechnol. 19: 409–413.

    Article  CAS  Google Scholar 

  44. Santamaría, R., Gil, J.A., Mesas, J.M. and Martín, J.F. 1984. Characterization of an endogenous plasmid and development of cloning vectors and a transformation system in Brevibacterium lactofermentum. J. Gen. Microbiol. 130: 2237–2246.

    Google Scholar 

  45. Smith, M.D., Flickinger, J.L., Lineberger, D.W. and Schmidt, B. 1986. Protoplast transformation in coryneform bacteria and introduction of an α-amylase gene from Bacillus amyloliquefaciens into Brevibacterium lactofermentum. Appl. Environ. Microbiol. 51: 636–639.

    Article  Google Scholar 

  46. Filpula, D., Ally, A.H. and Nagle, J. 1986. Complete nucleotide sequence of a native plasmid of Brevibacterium lactofermentum. Nucleic Acid Research 14: 514.

    Article  Google Scholar 

  47. Miwa, K., Matsui, K., Terabe, M., Ito, K., Ishida, M., Takagi, H., Nakamori, S. and Sano, K. 1985. Construction of novel shuttle vectors and a cosmid vector for the glutamic acid-producing bacteria Brevibacterium lactofermentum and Corynebacterium glutamicum. Gene 39: 281–286.

    Article  CAS  PubMed  Google Scholar 

  48. Ozaki, A., Katsumata, R., Oka, T. and Furuya, A. 1984. Functional expression of the genes of Escherichia coli in gram-positive Corynebacterium glutamicum. Mol. Gen. Genet. 196: 175–178.

    Article  CAS  PubMed  Google Scholar 

  49. Tail, R.C. and Boyer, H.W. 1978. On the nature of tetracycline resistance controlled by plasmid pSC101. Cell. 13: 73–81.

    Article  Google Scholar 

  50. Keggins, K.M., Lovett, P.S. and Duvall, E.J. 1978. Molecular cloning of genetically active fragments of Bacillus DNA in B. subtilis and properties of the vector plasmid pUB110. Proc. Natt. Acad. Sci. USA. 75: 1423–1427.

    Article  CAS  Google Scholar 

  51. Hopwood, D.A., Bibb, M.J., Chater, K.F., Kieser, T., Bruton, C.J., Kieser, H.M., Lydiate, D.J., Smith, C.P., Ward, J.M. and Schrempf, H. 1985. Genetic Manipulation in Streptomyces: A Laboratory Manual. John Innes Foundation, Norwich.

  52. Gil, J.A., Kieser, H.M. and Hopwood, D.A. 1986. Cloning of a chloramphenicol acetyltransferase gene of Streptomyces acrimycini and its expression in Streptomyces and E. coli. Gene. 38: 1–8.

    Article  Google Scholar 

  53. Zalacain, M., González, A., Guerrero, M.C., Mattaliano, R.J., Malpartida, F. and Jiménez, A. 1986. Nucleotide sequence of the hygromycin B phosphotransferase gene from Streptomyces hygroscopicus. Nucleic Acids Res. 14: 1565–1581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Schiller, T., Groman, N. and Coyle, M. 1980. Plasmids in corynebacterium diphtheriae. Antimicrob. Agents and Chemother. 18: 814–821.

    Article  CAS  Google Scholar 

  55. Roberts, A.N., Hudson, G.S. and Brenner, S. 1985. An erythromycin-resistance gene from an erythromycin-producing strain of Arthrobacter sp. Gene 35: 259–270.

    Article  CAS  PubMed  Google Scholar 

  56. Del Real, G., Aguilar, A. and Martín, J.F. 1985. Cloning and expression of tryptophan genes from Brevibacterium lactofermentum in Escherichia coli. Biochem. Biophys. Res. Commun. 133: 1013–1019.

    Article  CAS  PubMed  Google Scholar 

  57. Mateos, L.M., Del Real, G., Aguilar, A. and Martín, J.F. 1986. Cloning and expression in Escherichia coli of the homoserine kinase (thr B) gene from Brevibacterium lactofermentum. Mol. Gen. Genet. In press.

  58. Kono, M., Sasatsu, M., Aoki, T. and Noguchi, N. 1984. Bacillus subtilis cloning vectors which originated from Corynebacterium xerosis. Agr. Biol. Chem. 48: 821–822.

    CAS  Google Scholar 

  59. Santamaría, R., Gil, J.A. and Martín, J.F. 1985. High-frequency transformation of Brevibacterium lactofermentum protoplasts by plasmid DNA. J. Bacteriol. 162: 463–467.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Hongo, M., Oki, T. and Ogata, S. 1972. Phage contamination and control, p. 63–83. In: The Microbial Production of Amino Acids. K. Yamada, S Kinoshita, T. Tsunoda, K. Aida. (eds.). John Wiley, New York.

    Google Scholar 

  61. Shapiro, J.A. 1976. Observations on lysogeny in glutamic acid bacteria. Appl. Environ. Microbiol. 32: 179–182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kato, F., Yoshimi, M., Araki, K., Motomura, Y., Matsufune, Y., Nobunaga, H. and Murata, A. 1984. Screening of bacteriocins in amino acid or nucleic acid producing bacteria and related species. Agric. Biol. Chem. 48: 193–200.

    CAS  Google Scholar 

  63. Kaczorek, M., Zettlmeissl, G., Delpeyroux, F. and Streeck, E. 1985. Diphtheria toxin promoter function in Corynebacterium diphtheriae and Escherichia coli. Nucleic Acids Res. 13: 3147–3159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Buck, G.A. and Groman, N.B. 1981b. Identification of deoxyribonucleic acid restriction fragments of β-converting corynebacteriophages that carry the gene for diphtheria toxin. J. Bacteriol. 148: 153–162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Rappuoli, R., Michel, J.L. and Murphy, J.R. 1983. Integration of corynebacteriophages βtox+, ωtox+ and γtox into attachment sites on the Corynebacterium diphtheriae chromosome. J. Bacteriol. 153: 1202–1210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Greenfield, L., Bjorn, M.J., Horn, G., Fong, D., Buck, G.A., Collier, R.J. and Kaplan, D.A. 1983. Nucleotide sequence of the structural gene for diphtheria toxin carried by corynebacteriophage β. Proc. Nat. Acad. Sci. USA. 80: 6853–6857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ozaki, A., Katsumata, R., Oka, T. and Furuya, A. 1984. Transfection of Corynebacterium glutamicum with temperate phage 0CG1. Agr. Biol. Chem. 48: 2597–2601.

    Article  CAS  Google Scholar 

  68. Sánchez, F., Peñalva, M.A., Patiño, C. and Rubio, V. 1986. An efficient method for the introduction of viral DNA into Brevibacterium lactofermentum protoplasts. J. Gen. Microbiol. 132: 1767–1770.

    PubMed  Google Scholar 

  69. Patek, M., Ludvik, J., Benada, O., Hochmannova, J., Nesvera, J., Krumphanzl, V. and Bucko, M. 1985. New bacteriophage-like particles in Corynebacterium glutamicum. Virology 140: 360–363.

    Article  CAS  PubMed  Google Scholar 

  70. Hiria, K. and Yanagawa, R. 1970. Generalized transduction in Corynebacterium renale. J. Bacteriol. 101: 1086–1087.

    Article  Google Scholar 

  71. Momose, H., Miyashiro, S. and Oba, M. 1976. On the transducing phages in glutamic acid-producing bacteria. J. Gen. Appl. Microbiol. 22: 119–129.

    Article  Google Scholar 

  72. Hohn, B. 1979. In vitropackaging of λ and cosmid DNA. Methods. Enzymol. 68: 299–309.

    Article  CAS  PubMed  Google Scholar 

  73. Tsuchida, T., Miwa, K. and Nakamori, S. 1982. European patent application 66, 129.

  74. Kaneko, H. and Sakaguchi, K. 1979. Fusion of protoplast and genetic recombination of Brevibacterium flavum. Agr. Biol. Chem. 43: 1007–1013.

    CAS  Google Scholar 

  75. Santamaría, R., Mesas, J.M. and Martín, J.F. 1982. Genetic recombination by protoplast fusion in coryneform bacteria Abstracts 4th. International Symposium on Genetics of Industrial Microorganisms. Kyoto, Japan, 60.

  76. Komatsu, Y. 1979. Completelysis of glutamic-acid-producing bacteria by the use of antibiotics which inhibit the biosynthesis of cell-walls. J. Gen. Microbiol. 113: 407–408.

    Article  CAS  PubMed  Google Scholar 

  77. Best, G.R. and Britz, M.L. 1986. Facilitated protoplasting in certain auxotrophic mutants of Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 23: 288–291.

    Article  CAS  Google Scholar 

  78. Bibb, M.J., Ward, J.M. and Hopwood, D.A. 1978. Transformation of plasmid DNA into Streptomyces at high frequency. Nature 274: 398–400.

    Article  CAS  PubMed  Google Scholar 

  79. Chang, S. and Cohen, S.N. 1979. High-frequency transformation of Bacillus subtilis protoplasts by plasmid DNA. Mol. Gen. Genet. 166: 111–115.

    Article  Google Scholar 

  80. Hopwood, D.A. 1981 Genetic studies with bacterial protoplasts. Ann. Rev. Microbiol. 35: 237–272.

    Article  CAS  Google Scholar 

  81. Márquez, G., Fernández-Sousa, J.M. and Sánchez, F. 1985. Cloning of expression in E. coli of genes involved in the lysine pathway of Brevibacterium lactofermentum. J. Bacteriol. 164: 379–383.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Ozaki, A., Katsumata, R., Oka, T. and Furuya, A. 1985. Cloning of the genes concerned in phenylalanine biosynthesis in Corynebacterium glutamicum and its application to breeding of a phenylalanine-producing strain. Agr. Biol. Chem. 49: 2925–2930.

    CAS  Google Scholar 

  83. Follettie, M.T. and Sinskey, A.J. 1986. Molecular cloning and nucleotide sequence of the Corynebacterium glutamicum phe A gene. J.Bacteriol. 167: 692–702.

    Article  Google Scholar 

  84. Sugimoto, S. and Shiio, I. 1977. Enzymes of the tryptophan synthetic pathway in Brevibacterium flavum. J. Biochem. 81: 823–833.

    Article  CAS  PubMed  Google Scholar 

  85. Crawford, I.P. and Stauffer, G.V. 1980. Regulation of tryptophan biosynthesis. Ann. Rev. Biochem. 49: 163–195.

    Article  CAS  PubMed  Google Scholar 

  86. Lynn, S.P. and Gadner, J.F. 1983. The threonine operon of Escherichia coli, 173–189. In: Amino Acid Biosynthesis And Genetic Regulation. K. M. Hermann, R. L. Somerville. (eds.). Addison-Wesley, Reading, Mass.

    Google Scholar 

  87. Fazel, A.M. and Jensen, R.A. 1979. Obligatory biosynthesis of L-tyrosine via the pretyrosine branchlet in coryneform bacteria. J. Bacteriol. 138: 805–815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Dauce-Le Reverend, B., Boitel, M., Deschamps, A., Lebeault, J.M., Sano, K., Takinami, K. and Patte, J.C. 1982. Improvement of Escherichia coli strains overproducing lysine using recombinant DNA techniques. Eur. J. Appl. Microbiol. Biotechnol. 15: 227–231.

    Article  CAS  Google Scholar 

  89. Aiba, S., Tadayuki, I. and Hiroshi, T. 1980. Enhancement of tryptophan production by Escherichia coli as an application of genetic engineering. Biotech. Lett. 2: 525–530.

    Article  CAS  Google Scholar 

  90. Aiba, S., Tsunekawa, H. and Imanaka, T. 1982. New approach to tryptophan production by Escherichia coli: Genetic manipulation of composite plasmids in vitro. Appl. Environ. Microbiol. 43: 289–297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Miwa, K., Tsuchida, T., Kurahashi, D., Nakamori, S., Sano, K. and Momose, H. 1983. Construction of L-threonine overproducing strains of Escherichia coli K-12 using recombinant DNA techniques. Agr. Biol. Chem. 47: 2329–2334.

    CAS  Google Scholar 

  92. Miwa, K., Nakamori, S., Sano, K. and Momose, H. 1984. Stability of recombinant plasmids carrying the threonine operon in Escherichia coli. Agr. Biol. Chem. 48: 2233–2237.

    CAS  Google Scholar 

  93. Debabov, J. 1983. Construction of strains producing L-threonine, 254–258 In: Genetics Of Industrial Microorganisms 1982. Y. Ikeda and T. Beppu (eds.). Kodansha Ltd., Tokyo, Japan.

    Google Scholar 

  94. Katsumata, R., Ozaki, A., Oka, T. and Furuya, A. 1982. European Patent Application 82,485.

  95. Kaneko, H., Tanaka, T. and Sakaguchi, K. 1979. Isolation and characterization of a plasmid from Brevibacterium lactofermentum. Agr. Biol. Chem. 43: 867–868.

    Article  CAS  Google Scholar 

  96. Gross, D.C., Vidaver, A.K. and Keralis, M.B. 1979. Indigenous plasmids from phytopathogenic Corynebacterium species. J. Gen. Microbiol. 115: 479–489.

    Article  CAS  Google Scholar 

  97. Murai, N., Skocg, F., Doyle, M.E. and Hanson, R.S. 1980. Relationships between cytokinin production, presence of plasmids, and fascination caused by strains of Corynebacterium fascians. Proc. Natl. Acad. Sci. USA. 77: 619–623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Lawson, E.N., Gantotti, B. and Starr, M.P. 1982. A 78 megadalton plasmid occurs in avirulent strains as well as virulent strains of Corynebacterium fascians. Current Microbiol. 7: 327–332.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martín, J., Santamaría, R., Sandoval, H. et al. Cloning Systems in Amino Acid–Producing Corynebacteria. Nat Biotechnol 5, 137–146 (1987). https://doi.org/10.1038/nbt0287-137

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0287-137

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing