Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Enhancement of antitumor immunity by prolonging antigen presentation on dendritic cells

Abstract

Vaccination with dendritic cells (DCs) pulsed with antigenic peptides derived from various tumor antigens has great, but as yet significantly unrealized, potential in cancer treatment. Here, we describe a strategy for prolonged presentation of an MHC class I–restricted self-peptide on DCs through linkage of it to a cell penetrating peptide (CPP). DCs loaded with a peptide derived from tyrosinase-related protein 2 (TRP2) covalently linked to a CPP1 sequence retained full capacity to stimulate T cells for at least 24 h, completely protected immunized mice from subsequent tumor challenge, and significantly inhibited lung metastases in a 3-day tumor model. DCs pulsed with TRP2 alone failed to provide any of these protections. In addition, we demonstrate that both CD4+ and CD8+ T cells were required for potent antitumor immunity. This CPP-based approach may be generally applicable to enhance the efficacy of DC-based peptide vaccines against cancer and other diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Intracellular delivery of CPP1-peptides into dendritic cells and prolonging of their ability to stimulate T cells.
Figure 2: Immunization of mice with mature DCs pulsed with CPP1-TRP2 generates protective immunity.
Figure 3: Comparative analysis of lung metastases and animal survival.
Figure 4: Induction of CD8+ T cell responses after vaccination.
Figure 5: Requirement of CD4+ and CD8+ T cells for antitumor immunity.
Figure 6: Treatment of active B16 tumor with DCs pulsed with the CPP1-TRP2 peptide.

Similar content being viewed by others

References

  1. Wang, R.-F. & Rosenberg, S.A. Human tumor antigens for cancer vaccine development. Immunol. Rev. 170, 85–100 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Boon, T. & Van der Bruggen, P. Human tumor antigens recognized by T lymphocytes. J. Exp. Med. 183, 725–729 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Gilboa, E. The makings of a tumor rejection antigen. Immunity 11, 263–270 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Houghton, A.N., Gold, J.S. & Blachere, N.E. Immunity against cancer: lessons learned from melanoma. Curr. Opin. Immunol. 13, 134–140 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Dallal, R.M. & Lotze, M.T. The dendritic cell and human cancer vaccines. Curr. Opin. Immunol. 12, 583–588 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Schuler, G. & Steinman, R.M. Dendritic cells as adjuvants for immune-mediated resistance to tumors. J. Exp. Med. 186, 1183–1187 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Banchereau, J. & Steinman, R.M. Dendritic cells and the control of immunity. Nature 392, 245–252 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Celluzzi, C.M., Mayordomo, J.I., Storkus, W.J., Lotze, M.T. & Falo, L.D., Jr. Peptide-pulsed dendritic cells induce antigen-specific CTL-mediated protective tumor immunity. J. Exp. Med. 183, 283–287 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Paglia, P., Chiodoni, C., Rodolfo, M. & Colombo, M.P. Murine dendritic cells loaded in vitro with soluble protein prime cytotoxic T lymphocytes against tumor antigen in vivo. J. Exp. Med. 183, 317–322 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Young, J.W. & Inaba, K. Dendritic cells as adjuvants for class I major histocompatibility complex-restricted antitumor immunity. J. Exp. Med. 183, 7–11 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Nestle, F.O. et al. Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat. Med. 4, 328–332 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Thurner, B. et al. Vaccination with mage-3A1 peptide-pulsed mature, monocyte-derived dendritic cells expands specific cytotoxic T cells and induces regression of some metastases in advanced stage IV melanoma. J. Exp. Med. 190, 1669–1678 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bellone, M. et al. Relevance of the tumor antigen in the validation of three vaccination strategies for melanoma. J. Immunol. 165, 2651–2656 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Schreurs, M.W. et al. Dendritic cells break tolerance and induce protective immunity against a melanocyte differentiation antigen in an autologous melanoma model. Cancer Res. 60, 6995–7001 (2000).

    CAS  PubMed  Google Scholar 

  15. Parkhurst, M.R. et al. Improved induction of melanoma reactive CTL with peptides from the melanoma antigen gp100 modified at HLA-A0201 binding residues. J. Immunol. 157, 2539–2548 (1996).

    CAS  PubMed  Google Scholar 

  16. Rosenberg, S.A. et al. Immunologic and therapeutic evaluation of a synthetic tumor-associated peptide vaccine for the treatment of patients with metastatic melanoma. Nat. Med. 4, 321–327 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Slansky, J.E. et al. Enhanced antigen-specific antitumor immunity with altered peptide ligands that stabilize the MHC–peptide–TCR complex. Immunity 13, 529–538 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Labeur, M.S. et al. Generation of tumor immunity by bone marrow-derived dendritic cells correlates with dendritic cell maturation stage. J. Immunol. 162, 168–175 (1999).

    CAS  PubMed  Google Scholar 

  19. Cella, M., Engering, A., Pinet, V., Pieters, J. & Lanzavecchia, A. Inflammatory stimuli induce accumulation of MHC class II complexes on dendritic cells. Nature 388, 782–787 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Ludewig, B., Odermatt, B., Ochsenbein, A.F., Zinkernagel, R.M. & Hengartner, H. Role of dendritic cells in the induction and maintenance of autoimmune diseases. Immunol. Rev. 169, 45–54 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Frankel, A.D. & Pabo, C.O. Cellular uptake of the tat protein from human immunodeficiency virus. Cell 55, 1189–1193 (1988).

    Article  CAS  PubMed  Google Scholar 

  22. Elliott, G. & O'Hare, P. Intercellular trafficking and protein delivery by a herpesvirus structural protein. Cell 88, 223–233 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Phelan, A., Elliott, G. & O'Hare, P. Intercellular delivery of functional p53 by the herpesvirus protein VP22 [see comments]. Nat. Biotechnol. 16, 440–443 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Lin, Y.Z., Yao, S.Y., Veach, R.A., Torgerson, T.R. & Hawiger, J. Inhibition of nuclear translocation of transcription factor NF-kappa B by a synthetic peptide containing a cell membrane-permeable motif and nuclear localization sequence. J. Biol. Chem. 270, 14255–14258 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Rojas, M., Donahue, J.P., Tan, Z. & Lin, Y.Z. Genetic engineering of proteins with cell membrane permeability. Nat. Biotechnol. 16, 370–375 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Fawell, S. et al. Tat-mediated delivery of heterologous proteins into cells. Proc. Natl. Acad. Sci. USA 91, 664–668 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kim, D.T. et al. Introduction of soluble proteins into the MHC class I pathway by conjugation to an HIV tat peptide. J. Immunol. 159, 1666–1668 (1997).

    CAS  PubMed  Google Scholar 

  28. Schwarze, S.R., Ho, A., Vocero-Akbani, A. & Dowdy, S.F. In vivo protein transduction: delivery of a biologically active protein into the mouse. Science 285, 1569–1572 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Lindgren, M., Hallbrink, M., Prochiantz, A. & Langel, U. Cell-penetrating peptides. Trends Pharmacol. Sci. 21, 99–103 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Caron, N.J. et al. Intracellular delivery of a Tat-eGFP fusion protein into muscle cells. Mol. Ther. 3, 310–318 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Wang, R.-F., Appella, E., Kawakami, Y., Kang, X. & Rosenberg, S.A. Identification of TRP-2 as a human tumor antigen recognized by cytotoxic T lymphocytes. J. Exp. Med. 184, 2207–2216 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bloom, M.B. et al. Identification of tyrosinase-related protein 2 as a tumor rejection antigen for the B16 melanoma. J. Exp. Med. 185, 453–460 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Parkhurst, M.R. et al. Identification of a shared HLA-A*0201-restricted T-cell epitope from the melanoma antigen tyrosinase-related protein 2 (TRP2). Cancer Res. 58, 4895–4901 (1998).

    CAS  PubMed  Google Scholar 

  34. Zeh, H.J., Perry-Lalley, D., Dudley, M.E., Rosenberg, S.A. & Yang, J.C. High avidity CTLs for two self-antigens demonstrate superior in vitro and in vivo antitumor efficacy. J. Immunol. 162, 989–994 (1999).

    CAS  PubMed  Google Scholar 

  35. Overwijk, W.W. et al. Vaccination with a recombinant vaccinia virus encoding a “self” antigen induces autoimmune vitiligo and tumor cell destruction in mice: requirement for CD4+ T lymphocytes. Proc. Natl. Acad. Sci. USA 96, 2982–2987 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bowne, W.B. et al. Coupling and uncoupling of tumor immunity and autoimmunity. J. Exp. Med. 190, 1717–1722 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Winzler, C. et al. Maturation stages of mouse dendritic cells in growth factor-dependent long-term cultures. J. Exp. Med. 185, 317–328 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Srivastava, P.K. Immunotherapy of human cancer: lessons from mice. Nat. Immunol. 1, 363–366 (2000).

    CAS  PubMed  Google Scholar 

  39. Suhrbier, A. et al. Peptide epitope induced apoptosis of human cytotoxic T lymphocytes. Implications for peripheral T cell deletion and peptide vaccination. J. Immunol. 150, 2169–2178 (1993).

    CAS  PubMed  Google Scholar 

  40. Casares, N. et al. Immunization with a tumor-associated CTL epitope plus a tumor-related or unrelated Th1 helper peptide elicits protective CTL immunity. Eur. J. Immunol. 31, 1780–1789 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Wang, R.-F. The role of MHC class II-restricted tumor antigens and CD4+ T cells in antitumor immunity. Trends Immunol. 22, 269–276 (2001).

    Article  PubMed  Google Scholar 

  42. Greenberg, P.D. Adoptive T cell therapy of tumors: mechanisms operative in the recognition and elimination of tumor cells. Adv. Immunol. 49, 281–355 (1991).

    Article  CAS  PubMed  Google Scholar 

  43. Pardoll, D.M. & Topalian, S.L. The role of CD4+ T cell responses in antitumor immunity. Curr. Opin. Immunol. 10, 588–594 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. Hung, K. et al. The central role of CD4+ T cells in the antitumor immune response. J. Exp. Med. 188, 2357–2368 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Toes, R.E., Ossendorp, F., Offringa, R. & Melief, C.J. CD4 T cells and their role in antitumor immune responses. J. Exp. Med. 189, 753–756 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Specht, J.M. et al. Dendritic cells retrovirally transduced with a model antigen gene are therapeutically effective against established pulmonary metastases. J. Exp. Med. 186, 1213–1221 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Malcolm Brenner for his helpful suggestions and critical reading of the manuscript and Tihui Fu for assistance in some experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong-Fu Wang.

Supplementary information

Web Figure 1.

Phenotype characterization and MLR assay of DCs. A) Surface phenotype of mature and immature DCs generated different culture conditions. DCs were stained anti-CD11c-PE along with anti-I-A-FITC, anti-B7-1-FITC and anti-B7-2-FITC, respectively, and analyzed by flow cytometry. Double positive staining of mutaure DC for CD11c and co-stimulatory B7.1, B7.2 and MHC class II molecules was 55-70% while double positive staining for immature DC was only about 15-20%. B) Allogeneic MLR of mature, immature DCs and splenocytes. DCs were cocultured with allogeneic BALB/c T cells isolated from bulk splenocytes by passing cell through an immunoaffinity column. [3H]-thymidine incorporation from triplicate wells were obtained after subtraction of the background counts from irradiated stimulators and T cells alone, and are plotted as the average counts for each stimulator:effector ratio. (GIF 100 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, RF., Wang, H. Enhancement of antitumor immunity by prolonging antigen presentation on dendritic cells. Nat Biotechnol 20, 149–154 (2002). https://doi.org/10.1038/nbt0202-149

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0202-149

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing