Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nonenzymatic autoligation in direct three-color detection of RNA and DNA point mutations

Abstract

Enzymatic ligation methods are useful in diagnostic detection of DNA sequences. Here we describe the investigation of nonenzymatic phosphorothioate–iodide DNA autoligation chemistry as a method for detection and identification of both RNA and DNA sequences. Combining ligation specificity with the hybridization specificity of the ligated product is shown to yield discrimination of a point mutation as high as >104-fold. Unlike enzymatic ligations, this reaction is found to be equally efficient on RNA or DNA templates. The reaction is also shown to exhibit a significant level of self-amplification, with the template acting in catalytic fashion to ligate multiple pairs of probes. A strategy for fluorescence labeling of three autoligating energy transfer (ALET) probes and directly competing them for autoligation on a target sequence is described. The method is tested in several formats, including solution phase, gel, and blot assays. The ALET probe design offers direct RNA detection, combining high sequence specificity with an easily detectable color change by fluorescence resonance energy transfer (FRET).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structures and sequences, and progress of autoligation.
Figure 2: Sequence specificity of autoligation on duplex targets in the slot-blot assay.
Figure 3
Figure 4: Solution detection and gel-based detection of H-ras sequences by ALET probes.

Similar content being viewed by others

References

  1. Whitcombe, D., Newton, C.R. & Little, S. Advances in approaches to DNA-based diagnostics. Curr. Opin. Biotechnol. 9, 602–608 (1998).

    Article  CAS  Google Scholar 

  2. Orita, M., Iwahana, H., Kanazawa, H., Hayashi, K. & Sekiya, T. Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc. Natl. Acad. Sci. USA 86, 2766–2770 (1989).

    Article  CAS  Google Scholar 

  3. Myers, R.M., Larin, Z. & Maniatis, T. Detection of single base substitutions by ribonuclease cleavage at mismatches in RNA:DNA duplexes. Science 230, 1242–1246 (1985).

    Article  CAS  Google Scholar 

  4. Lyamichev, V., Brow, M.A. & Dahlberg, J.E. Structure-specific endonucleolytic cleavage of nucleic acids by eubacterial DNA polymerases. Science 260, 778–783 (1993).

    Article  CAS  Google Scholar 

  5. Soto, D. & Sukumar, S. Improved detection of mutations in the p53 gene in human tumors as single-stranded conformation polymorphs and double-stranded heteroduplex DNA. PCR Methods Appl. 2, 96–98 (1992).

    Article  CAS  Google Scholar 

  6. Sokolov, B.P. Primer extension technique for the detection of single nucleotide in genomic DNA. Nucleic Acids Res. 18, 3671 (1990).

    Article  CAS  Google Scholar 

  7. Alves, A.M. & Carr, F.J. Dot blot detection of point mutations with adjacently hybridising synthetic oligonucleotide probes. Nucleic Acids Res. 16, 8723 (1988).

    Article  CAS  Google Scholar 

  8. Whitcombe, D., Theaker, J., Guy, S.P., Brown, T. & Little, S. Detection of PCR products using self-probing amplicons and fluorescence. Nat. Biotechnol. 17, 804–807 (1999).

    Article  CAS  Google Scholar 

  9. Ferguson, J.A., Boles, T.C., Adams, C.P. & Walt, D.R. A fiber-optic DNA biosensor microarray for the analysis of gene expression. Nat. Biotechnol. 14, 1681–1684 (1996).

    Article  CAS  Google Scholar 

  10. Gunderson, K.L., et al. Mutation detection by ligation to complete n-mer DNA arrays. Genome Res. 8, 1142–1153 (1998).

    Article  CAS  Google Scholar 

  11. Guo, Z., Liu, Q. & Smith, L.M. Enhanced discrimination of single nucleotide polymorphisms by artificial mismatch hybridization. Nat. Biotechnol. 15, 331–335 (1997).

    Article  CAS  Google Scholar 

  12. Tyagi, S., Bratu, D.P. & Kramer, F.R. Multicolor molecular beacons for allele discrimination. Nat. Biotechnol. 16, 49–53 (1998).

    Article  CAS  Google Scholar 

  13. Landegren, U., Samiotaki, M., Nilsson, M., Malmgren, H. & Kwiatkowski, M. Detecting genes with ligases. Methods 9, 84–90 (1996).

    Article  CAS  Google Scholar 

  14. Barringer, K.J., Orgel, L., Wahl, G. & Gingeras, T.R. Blunt-end and single-strand ligations by Escherichia coli ligase: influence on an in vitro amplification scheme. Gene 89, 117–122 (1990).

    Article  CAS  Google Scholar 

  15. Wu, D.Y. & Wallace, R.B. The ligation amplification reaction (LAR)—amplification of specific DNA sequences using sequential rounds of template-dependent ligation. Genomics 4, 560–569 (1989).

    Article  CAS  Google Scholar 

  16. Nickerson, D.A. et al. Automated DNA diagnostics using an ELISA-based oligonucleotide ligation assay. Proc. Natl. Acad. Sci. USA 87, 8923–8927 (1990).

    Article  CAS  Google Scholar 

  17. Barany, F. Genetic disease detection and DNA amplification using cloned thermostable ligase. Proc. Natl. Acad. Sci. USA 88, 189–193 (1991).

    Article  CAS  Google Scholar 

  18. Landegren, U., Kaiser, R., Sanders, J. & Hood, L. A ligase-mediated gene detection technique. Science 241, 1077–1080 (1988).

    Article  CAS  Google Scholar 

  19. Wu, D.Y. & Wallace, R.B. Specificity of the nick-closing activity of bacteriophage T4 DNA ligase. Gene 76, 245–254 (1989).

    Article  CAS  Google Scholar 

  20. Samiotaki, M., Kwiatkowski, M., Parik, J. & Landegren, U. Dual-color detection of DNA sequence variants by ligase-mediated analysis. Genomics 20, 238–242 (1994).

    Article  CAS  Google Scholar 

  21. Luo, J., Bergstrom, D.E. & Barany, F. Improving the fidelity of Thermus thermophilus DNA ligase. Nucleic Acids Res. 24, 3071–3078 (1996).

    Article  CAS  Google Scholar 

  22. Favis, R. et al. Universal DNA array detection of small insertions and deletions in BRCA1 and BRCA2. Nat. Biotechnol. 18, 561–564 (2000).

    Article  CAS  Google Scholar 

  23. Nilsson, M., Barbany, G., Antson, D., Gertow, K. & Landegren, U. Enhanced detection and distinction of RNA by enzymatic probe ligation. Nat. Biotechnol. 18, 791–793 (2000).

    Article  CAS  Google Scholar 

  24. Pritchard, C.E. & Southern, E.M. Effects of base mismatches on joining of short oligodeoxynucleotides by DNA ligases. Nucleic Acids Res. 25, 3403–3407 (1997).

    Article  CAS  Google Scholar 

  25. Sokolova, N.I., Ashirbekova, D.T., Dolinnaya, N.G. & Shabarova, Z.A. Chemical reactions within DNA duplexes. Cyanogen bromide as an effective oligodeoxyribonucleo-tide coupling agent. FEBS Lett. 232, 153–155 (1988).

    Article  CAS  Google Scholar 

  26. Ashley, G.W. & Kushlan, D.M. Chemical synthesis of oligodeoxynucleotide dumbbells. Biochemistry 30, 2927–2933 (1991).

    Article  CAS  Google Scholar 

  27. Zhan, Z.-Y.J. & Lynn, D.G. Chemical amplification through template-directed synthesis. J. Am. Chem. Soc. 119, 12420–12421 (1997).

    Article  CAS  Google Scholar 

  28. Luo, P., Leitzel, J.C., Zhan, Z.-Y.J. & Lynn, D.G. Analysis of the structure and stability of a backbone-modified oligonucleotide: implications for avoiding product inhibition in catalytic template-directed synthesis. J. Am. Chem. Soc. 120, 3019–3031 (1998).

    Article  CAS  Google Scholar 

  29. Gryaznov, S.M. & Letsinger, R.L. Chemical ligation of oligonucleotide in the presence and absence of a template. J. Am. Chem. Soc. 115, 3808–3809 (1993).

    Article  CAS  Google Scholar 

  30. Gryaznov, S.M., Schultz, R., Chaturved, S.K. & Letsinger, R.L. Enhancement of selectivity in recognition of nucleic acids via chemical autoligation. Nucleic Acids Res. 22, 2366–2369 (1994).

    Article  CAS  Google Scholar 

  31. Chladek, S. & Nagyvary, J. Nucleophilic reactions of some nucleoside phosphorothioates. J. Am. Chem. Soc. 94, 2079–2084 (1972).

    Article  CAS  Google Scholar 

  32. Herrlein, M.K., Nelson, J.S. & Letsinger, R.L. A covalent lock for self-assembled oligonucleotide conjugates. J. Am. Chem. Soc. 117, 10151–10152 (1995).

    Article  CAS  Google Scholar 

  33. Cook, A.F. Nucleoside S-alkyl phosphorothioate. IV. Synthesis of nucleoside phosphorothioate monoesters. J. Am. Chem. Soc. 92, 190–195 (1970).

    Article  CAS  Google Scholar 

  34. Xu, Y. & Kool, E.T. A novel 5′-iodonucleoside allows efficient nonenzymatic ligation of single-stranded and duplex DNAs. Tetrahedron Lett. 38, 5595–5598 (1997).

    Article  CAS  Google Scholar 

  35. Liu, J. & Taylor, J.-S. Template-directed photoligation of oligodeoxyribonucleotides via 4-thiothymidine. Nucleic Acids Res. 26, 3300–3304 (1998).

    Article  CAS  Google Scholar 

  36. Albagli, D., Van Atta, R., Cheng, P., Huan, B. & Wood, M.L. Chemical amplification (CHAMP) by a continuous self-replicating oligonucleotide based system. J. Am. Chem. Soc. 121, 6954–6955 (1999).

    Article  CAS  Google Scholar 

  37. Xu, Y. & Kool, E.T. High sequence fidelity in a non-enzymatic DNA autoligation reaction. Nucleic Acids Res. 27, 875–881 (1999).

    Article  CAS  Google Scholar 

  38. Reddy, E.P., Reynolds, R.K., Santo, E. & Barbacid, M. A point mutation is responsible for the acquisition of transforming properties by the T24 human bladder carcinoma oncogene. Nature 300, 149–152 (1982).

    Article  CAS  Google Scholar 

  39. Luther, A., Brandsch, R. & von Kiedrowski, G. Surface-promoted replication and exponential amplification of DNA analogues. Nature. 19, 245–248 (1998).

    Article  Google Scholar 

  40. Xu, Y. & Kool, E.T. Chemical and enzymatic properties of bridging 5′-S-phosphorothioester linkages in DNA. Nucleic Acids Res. 26, 3159–3164 (1998).

    Article  CAS  Google Scholar 

  41. Xu, Y. Molecular recognition and detection of nucleic acid sequences. Ph.D. Thesis, University of Rochester, Rochester, NY (1999).

    Google Scholar 

  42. Stryer, L. Fluorescence energy transfer as a spectroscopic ruler. Annu. Rev. Biochem. 47, 819–846 (1978).

    Article  CAS  Google Scholar 

  43. Wu, P. & Brand, L. Resonance energy transfer: methods and applications. Anal. Biochem. 218, 1–13 (1994).

    Article  CAS  Google Scholar 

  44. Yang, M. & Millar, D.P. Fluorescence resonance energy transfer as a probe of DNA structure and function. Methods Enzymol. 278, 417–444 (1997).

    Article  CAS  Google Scholar 

  45. Cardullo, R.A., Agrawal, S., Flores, C., Zamecnik, P.C. & Wolf, D.E. Detection of nucleic acid hybridization by nonradiative fluorescence resonance energy transfer. Proc. Natl. Acad. Sci. USA 85, 8790–8794 (1988).

    Article  CAS  Google Scholar 

  46. Hung, S.C., Mathies, R.A. & Glazer, A.N. Optimization of spectroscopic and electrophoretic properties of energy transfer primers. Anal. Biochem. 252, 78–88 (1997).

    Article  CAS  Google Scholar 

  47. Heid, C.A., Stevens, J., Livak, K.J. & Williams, P.M. Real time quantitative PCR. Genome Res. 6, 986–994 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the National Institutes of Health (GM60612) and the Army Research Office for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric T. Kool.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Y., Karalkar, N. & Kool, E. Nonenzymatic autoligation in direct three-color detection of RNA and DNA point mutations. Nat Biotechnol 19, 148–152 (2001). https://doi.org/10.1038/84414

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/84414

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing