Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Antigen-specific downregulation of T cells by doxorubicin delivered through a recombinant MHC II–peptide chimera

Abstract

As the number of drugs with potential therapeutic use for T-cell-mediated diseases increases, there is a need to find methods of delivering such drugs to T cells. The major histocompatibility complex (MHC)–peptide complexes are the only antigen-specific ligands for the T-cell receptor (TCR) expressed on T cells, and they may be an appropriate drug delivery system. We engineered a soluble bivalent MHC class II–peptide chimera on the immunoglobulin scaffold (I-Edαβ/Fcγ2a/HA110-120, DEF) that binds stably and specifically to CD4 T cells recognizing the HA110-120 peptide. Doxorubicin, a powerful antimitogenic anthracycline, was enzymatically assembled on the galactose residues of a DEF chimera. The DEF-gal-Dox construct preserved both the binding capacity to hemagglutinin (HA)-specific T cells, and the drug toxicity. Brief exposure of HA-specific T cells to DEF-gal-Dox construct in vitro was followed by drug internalization in the lysosomes, translocation to the nucleus, and apoptosis. Administration of DEF-gal-Dox to mice expressing the TCR-HA transgene reduced the frequency of TCR-HA T cells in the spleen and thymus by 27% and 42%, and inhibited HA proliferative capacity by 40% and 60%, respectively. It has not been demonstrated previously that pharmacologically active drugs able to modulate T-cell functions can be delivered to T cells in an antigen-specific manner by soluble, bivalent MHC II–peptide chimeras.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of DEF-gal-Dox synthesis.
Figure 2: Specificity of doxorubicin coupling to the galactose residues of DEF chimera.
Figure 3: Delivery of doxorubicin by DEF-gal-Dox in the lysosomal compartment of antigen-specific T cells.
Figure 4: Determination of doxorubicin bound to DNA in T cells treated with DEF-gal-Dox construct.
Figure 5: Inhibition of HA-specific proliferation of TCR-HA T cells on exposure to DEF-gal-Dox in vitro.
Figure 6: Inhibition of HA-specific proliferation of TCR-HA T cells by DEF-gal-Dox in vivo.

Similar content being viewed by others

References

  1. Romagnani, S. The Th1/Th2 paradigm. Immunol. Today 18, 263–266 (1997).

    Article  CAS  Google Scholar 

  2. Hong, J.C. & Kahan, B.D. Immunosuppressive agents in organ transplantation: past, present, and future. Semin. Nephrol. 20, 108–125 (2000).

    CAS  Google Scholar 

  3. Alegre, M.L., Lenschow, D.L. & Bluestone, J.A. Immunomodulation of transplant rejection using monoclonal antibodies and soluble receptors. Dig. Dis. Sci. 40, 58–64 (1995).

    Article  CAS  Google Scholar 

  4. Nihira, S-I., Falcioni, F., Juretic, A., Bolin, D. & Nagy, Z.A. Induction of class II major histocompatibility complex blockade as well as T cell tolerance by peptides administered in soluble form. Eur. J. Immunol. 26, 1736–1742 (1996).

    Article  CAS  Google Scholar 

  5. Nagler-Anderson, C. Tolerance and immunity in the intestinal immune system. Crit. Rev. Immunol. 20, 103–120 (2000).

    Article  CAS  Google Scholar 

  6. Sette, A. et al. Antigen analogs/MHC complexes as specific T cell receptor antagonists. Annu. Rev. Immunol. 12, 413–431 (1994).

    Article  CAS  Google Scholar 

  7. Spack, E. et al. Induction of tolerance in experimental autoimmune myasthenia gravis with solubilized MHC class-II acetylcholine receptor peptide complexes. J. Autoimmunity 8, 787–807 (1995).

    Article  CAS  Google Scholar 

  8. Clark, B.R., Desphande, S.V., Sharma, S.D. & Nag, B. Antigen-specific deletion of cloned T cells using peptide–toxin conjugate complexed with purified class II major histocompatibility complex antigen. J. Biol. Chem. 269, 94–99 (1994).

    CAS  Google Scholar 

  9. Ishioka, G.Y. et al. MHC interaction and T cell recognition of carbohydrates and glycopeptides. J. Immunol. 148, 2446–2451 (1992).

    CAS  Google Scholar 

  10. Matsui, K., Boniface, J.J., Steffner, P., Reay, P.A. & Davis, M.M. Kinetics of T cell receptor to peptide/I–Ek complexes: correlation of the dissociation rate with T-cell responsiveness. Proc. Natl. Acad. Sci. U S A 85, 12862–12866 (1994).

    Article  Google Scholar 

  11. Kersh, G., Kersh, E.N., Fremont, D.H. & Allen, P.M. High-, and low potency ligands with similar affinities for the TCR: the importance of kinetics in TCR signaling. Immunity 9, 817–826 (1998).

    Article  CAS  Google Scholar 

  12. Reich, Z. et al. Ligand-specific oligomerization of T-cell receptor molecules. Nature 387, 617–620 (1997).

    Article  CAS  Google Scholar 

  13. Appel, H., Gauthier, L., Pyrdol, J. & Wucherpfennig, K.W. Kinetics of T-cell receptor binding by bivalent HLA–DR/peptide complexes that activate antigen-specific human T-cells. J. Biol. Chem. 275, 312–321 (2000).

    Article  CAS  Google Scholar 

  14. Casares, S., Bona, C. A. & Brumeanu, T-D. Engineering and characterization of a murine MHC class II-Immunoglobulin chimera expressing an immunodominant CD4 T viral epitope. Protein Eng. 10, 1295–1301 (1997).

    Article  CAS  Google Scholar 

  15. Stan, C.A., Radu, D.L., Casares, S., Bona, C. & Brumeanu, T-D. Antineoplastic efficacy of doxorubicin enzymatically assembled on galactose residues of a monoclonal antibody specific for the carcinoembryonic antigen (CEA). Cancer Res. 59, 115–121 (1999).

    CAS  Google Scholar 

  16. Siegfrid, J.A., Kennedy, K.A., Sartorelli, A.C. & Tritton, T.R. The role of membranes in the mechanism of action of the antineoplastic agent adriamycin. Spin-labeling studies with chronically hypoxic and drug-resistant tumor cells. J. Biol. Chem. 258, 339–343 (1983).

    Google Scholar 

  17. Brumeanu, T-D., Dehazya, P., Wolf, I. & Bona, C.A. Enzymatically mediated, glycosidic conjugation of immunoglobulins with viral epitopes. J. Immunol. Methods 183, 185–197 (1995).

    Article  CAS  Google Scholar 

  18. Wang, E., Lee, M.D. & Dunn, K.W. Lysosomal accumulation of drugs in drug-sensitive MES-SA but not multidrug-resistant MES-SA/Dx5 uterine sarcoma cells. J. Cell. Physiol. 184, 263–274 (2000).

    Article  CAS  Google Scholar 

  19. Bour-Dill, C., Gramain, M.P., Merlin, J.L., Marchal, S. & Guillemin, F. Determination of intracellular organelles implicated in daunorubicin cytoplasmic sequestration in multidrug-resistant MCF-7 cells using fluorescence microscopy image analysis. Cytometry 39, 16–25 (2000).

    Article  CAS  Google Scholar 

  20. Casares, S. et al. Antigen-specific signaling by a soluble, dimeric peptide/MHC Class II/Fc chimera leading to Th2 differentiation. J. Exp. Med. 190, 543–553 (1999).

    Article  CAS  Google Scholar 

  21. Stan, A.C., Casares, S., Radu, D.L., Walter, G.F. & Brumeanu, T-D. Doxorubicin-induced cell-death in highly invasive human gliomas. AntiCancer Res. 19, 1–10 (1999).

    Google Scholar 

  22. Blum, R.H. & Carter, S.K. Adriamycin. A new anticancer drug with significant clinical activity. Ann. Intern. Med. 80, 249–259 (1974).

    Article  CAS  Google Scholar 

  23. Tewey, K.M., Rowe, T.C., Yang, L., Halligan, B.D. & Liu, L.F. Adriamycin-induced DNA damage mediated by mammalian DNA topoisomerase II. Science 226, 466–468 (1984).

    Article  CAS  Google Scholar 

  24. Wang, H. et al. Decreased CP-1 (NF-Y) activity results in transcriptional down-regulation of topoisomerase IIα in a doxorubicin-resistant variant of human multiple myeloma RPMI 8226. Biochem. Biophys. Res. Commun. 237, 217–224 (1997).

    Article  CAS  Google Scholar 

  25. Tritton, T.R. Cell surface actions of adriamycin. Pharmacol. Ther. 49, 293–309 (1991).

    Article  CAS  Google Scholar 

  26. Sissi, C. et al. Interaction of calicheamicin gamma1 (I) and its related carbohydrates with DNA–protein complexes. Proc. Natl. Acad. Sci. USA 96, 10643–10648 (1999).

    Article  CAS  Google Scholar 

  27. Hanke, J.H. et al. Discovery of a novel, potent, and Src family-selective tyrosine kinase inhibitor. Study of Lck- and FynT-dependent T cell activation. J. Biol. Chem. 271, 695–701 (1996).

    Article  CAS  Google Scholar 

  28. Weber, S., Trannecker, A., Olivery, F., Gerhard, W.V. & Karjalainen, K. Specific low-affinity recognition of MHC complex plus peptide by soluble T-cell receptor. Nature 356, 793–796 (1992).

    Article  CAS  Google Scholar 

  29. Goldman, R., Facchinetti, T., Bach, D., Raz, A. & Shinitzky, M. A differential interaction of daunomycin, adriamycin, and their derivatives with human erythrocytes and phospholipid bilayers. Biochim. Biophys. Acta 512, 254–269 (1978).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants to S.C. (JDIF 1-1999-272, A & A .L. Sinsheimer Foundation, and NIH/ORWH/NIDDK 1R55-DK55744), and to T-D. B. (GC0 0247-3631/1999 from Mount Sinai School of Medicine, New York, NY, and NIH/NIDDK 1R41-DK55461-01A1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teodor- D. Brumeanu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Casares, S., Stan, A., Bona, C. et al. Antigen-specific downregulation of T cells by doxorubicin delivered through a recombinant MHC II–peptide chimera. Nat Biotechnol 19, 142–147 (2001). https://doi.org/10.1038/84404

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/84404

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing