Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Anchored multiplex amplification on a microelectronic chip array

Abstract

We have developed a method for anchored amplification on a microchip array that allows amplification and detection of multiple targets in an open format. Electronic anchoring of sets of amplification primers in distinct areas on the microchip permitted primer-primer interactions to be reduced and distinct zones of amplification created, thereby increasing the efficiency of the multiplex amplification reactions. We found strand displacement amplification (SDA) to be ideal for use in our microelectronic chip system because of the isothermal nature of the assay, which provides a rapid amplification system readily compatible with simple instrumentation. Anchored SDA supported multiplex DNA or RNA amplification without decreases in amplification efficiency. This microelectronic chip-based amplification system allows multiplexed amplification and detection to be performed on the same platform, streamlining development of any nucleic acid-based assay.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of anchored strand displacement amplification (SDA).
Figure 2: Anchored SDA amplification of human Factor V DNA.
Figure 3: 10-plex anchored SDA amplification.
Figure 4: Anchored genomic DNA amplification.
Figure 5: Anchored RT-SDA.

Similar content being viewed by others

References

  1. Debouck, C. & Goodfellow, P.N. DNA microarrays in drug discovery and development. Nat. Genet. 21, 48–50 (1999).

    Article  CAS  Google Scholar 

  2. Schena, M., Shalon, D., Davis, R.W. & Brown, P.O. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467–470 (1995).

    Article  CAS  Google Scholar 

  3. Eggers, M. & Ehrlich, D. A review of microfabricated devices for gene-based diagnostics. Hematol. Pathol. 9, 1–15 (1995).

    CAS  PubMed  Google Scholar 

  4. Chee, M. et al. Accessing genetic information with high-density DNA arrays. Science 274, 610–614 (1996).

    Article  CAS  Google Scholar 

  5. Lockhart, D.J. et al. Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat. Biotechnol. 14, 1675–1680 (1996).

    Article  CAS  Google Scholar 

  6. Ferguson, J.A, Boles, T.C., Adams, C.P. & Walt, D.R. A fiber-optic DNA biosensor microarray for the analysis of gene expression. Nat. Biotechnol. 14, 1681–1684 (1996).

    Article  CAS  Google Scholar 

  7. Weiler, J. & Hoheisel, J.D. Combining the preparation of oligonucleotide arrays and synthesis of high quality primers. Anal. Biochem., 15, 218–227 (1996).

    Article  Google Scholar 

  8. Edwards, M.C. & Gibbs, R.A. Multiplex PCR: advantages, development and applications. PCR Methods Appl. 3, S65–S75 (1994).

    Article  CAS  Google Scholar 

  9. Rychlik, W. Selection of primers for polymerase chain reaction. Mol. Biotechnol. 3, 129–134 (1995).

    Article  CAS  Google Scholar 

  10. Shuber, A.P., Grondin, V.J. & Klinger, K.W. A simplified procedure for developing multiplex PCRs. Genome Res. 5, 488–493 (1995).

    Article  CAS  Google Scholar 

  11. Brownie, J. et al. The elimination of primer–dimer accumulation in PCR. Nucleic Acids Res. 25, 3235–3241 (1997).

    Article  CAS  Google Scholar 

  12. Sosnowski, R.G., Tu, E., Butler, W.F., O'Connell, J.P. & Heller, M.J. Rapid determination of single-base mismatch mutations in DNA hybrids by direct electric field control. Proc. Natl. Acad. Sci. USA 94, 1119–1123 (1997).

    Article  CAS  Google Scholar 

  13. Edman, C.F. et al. Electric field directed nucleic acid hybridization on microchips. Nucleic Acids Res. 25, 4907–4914 (1997).

    Article  CAS  Google Scholar 

  14. Walker, G.T, Little, M.C., Nadeau, J.G. & Shank, D.D. Isothermal, in vitro amplification of DNA by a restriction enzyme/DNA polymerase system. Proc. Natl. Acad. Sci. USA 89, 392–396 (1992).

    Article  CAS  Google Scholar 

  15. Romano, J.W., Williams, K.G., Shurtliff, R.N., Ginocchio, C. & Kaplan, M. NASBA technology: isothermal RNA amplification in qualitative and quantitative diagnostics. Immunol. Invest. 26, 15–28 (1997).

    Article  CAS  Google Scholar 

  16. Pasternack, R., Vuorinen, P, & Miettinen, A. Evaluation of the gen-probe Chlamydia trachomatis transcription-mediated amplification assay with urine specimens from women. J. Clin. Microbiol. 35, 676–678 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Lizardi, P.M. et al. Mutation detection and single molecule counting using isothermal rolling-circle amplification. Nat. Genet. 19, 225–232 (1998).

    Article  CAS  Google Scholar 

  18. Spargo, C.A. et al. Detection of M. tuberculosis DNA using thermophilic strand displacement amplification. Mol. Cell. Probes 10, 247–256 (1996).

    Article  CAS  Google Scholar 

  19. Svensson, P.J. & Dahlback, B. Resistance to activated protein C as a basis for venous thrombosis. N. Engl. J. Med., 300, 517–522 (1994).

    Article  Google Scholar 

  20. Bertina, R.M. et al. Mutation in blood coagulation factor V associated with resistance to activated protein C. Nature 369, 64–67 (1994).

    Article  CAS  Google Scholar 

  21. Nycz, C.M., Dean, C.H., Haaland, P.D., Spargo, C.A. & Walker, G.T. Quantitative reverse transcription strand displacement amplification: quantitation of nucleic acids using an isothermal amplification technique. Anal. Biochem. 259, 226–234 (1998).

    Article  CAS  Google Scholar 

  22. Hatch, A., Sano, T., Misasi, J. & Smith, C.L. Rolling circle amplification of DNA immobilized on solid surfaces and its application to multiplex mutation detection. Genet. Anal. 15, 35–40 (1999).

    Article  CAS  Google Scholar 

  23. Adams, C.P. & Kron, S.J. Method for performing amplification of nucleic acid with two primers bound to a single solid support. US PTO, US 5,641,658 (1997).

  24. Van Gelder R.N. et al. Amplified RNA synthesized from limited quantities of heterogeneous cDNA. Proc. Natl. Acad. Sci. USA 87, 1663–1667 (1990).

    Article  CAS  Google Scholar 

  25. Halpern, N.A. & Brentjens, T. Point of care testing informatics: The critical care-hospital interface. Crit. Care Clin. 15, 577–591 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to gratefully acknowledge the intellectual contributions and support of Drs. Terry Walker, Dan MacLaurin, and Doug Malinowski, and Cathy Spargo of Becton-Dickinson, and Drs. Tina S. Nova, Jim P. O'Connell, Michael Heller, John Carrino, and Prashant Mehta of Nanogen, Inc. throughout the course of this work. The authors are especially grateful to Drs. Ray Radtke, Lana Feng, and Geoff Landis, and Dana Vollmer of Nanogen, Inc. for their contributions in support of permeation layer, primer design, and SDA in earlier stages of this work. Supported under Award number 97-LB-VX-0004 from the Office of Justice Programs, National Institute of Justice, Department of Justice. Points of view in this document are those of the authors and do not necessarily represent the official position of the US Department of Justice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorelei Westin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Westin, L., Xu, X., Miller, C. et al. Anchored multiplex amplification on a microelectronic chip array. Nat Biotechnol 18, 199–204 (2000). https://doi.org/10.1038/72658

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/72658

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing