Research Review | Published:

Display of heterologous proteins on the surface of microorganisms: From the screening of combinatorial libraries to live recombinant vaccines

Nature Biotechnologyvolume 15pages2934 (1997) | Download Citation

Subjects

Abstract

In recent years there has been considerable progress towards the development of expression systems for the display of heterologous polypeptides and, to a lesser extent, oligosaccharides on the surface of bacteria or yeast. The availability of protein display vectors has in turn provided the impetus for a range of exciting technologies. Polypepttde libraries can be displayed in bacteria and screened by cell sorting techniques, thus simplifying the isolation of proteins with high affinity for ligands. Expression of antigens on the surface of nonvirulent microorganisms is an attractive approach to the development of high-efficacy recombinant live vaccines. Finally, cells displaying protein receptors or antibodies are of use for analytical applications and bioseparations.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Whitehorn, E.A., Tate, E., Yanofsky, S.D., Kochersperger, L., Davis, A., Mortensen, R.B., et al. 1995. A generic method for expression and use of “tagged” soluble versions of cell surface receptors. Bio/Technology 13: 1215–19.

  2. 2

    Georgiou, G., Poetschke, H.L., Stathopoulos, C., and Francisco, J.A. 1993. Practical applications of engineering Gram-negative bacterial cell surfaces. Trends Biotechnol. 11: 6–10.

  3. 3

    Little, M., Fuchs, P., Breitling, R, and Dubel, S. 1993. Bacterial surface presentation of proteins and peptides: an alternative to phage technology? Trends Biotechnol. 11: 3–5.

  4. 4

    Hofnung, M. 1991. Expression of foreign polypeptides at the Escherichia coli cell surface. Methods Cell Biol. 34: 77–105.

  5. 5

    Charbit, A., Molla, A., Saurin, W., and Hofnung, M. 1988. Versatility of a vector for expressing foreign polypeptides at the surface of Gram-negative bacteria. Gene 70: 181–189.

  6. 6

    Agterberg, M., Adriaanse, H., van Bruggen, A., Karperien, M., and Tommassen, J. 1990. Outer-membrane PhoE protein of Escherichia coli K-12 as an exposure vector: possibilities and limitations. Gene 88: 37–45.

  7. 7

    Su, G.-F., Brahmbhatt, H.N., Wehland, J., Rohde, M., and Timmis, K.N. 1992. Construction of stable LamB-Shiga toxin B subunit hybrids: analysis of expression in Salmonella typhimurium aroA strains and stimulation of B subunit-specific mucosal and serum antibody responses. Infect. Immun. 60: 3345–3359.

  8. 8

    Wong, R.S.Y., Wirtz, R.A., and Hancock, R.E.W. 1995. Pseudomonas aeruginosa outer membrane protein OprF as an expression vector for foreign epitopes: the effects of positioning and length on the antigenicrty of the epitope. Gene 158: 55–60.

  9. 9

    Newton, S.M., Klebba, R.E., Michel, V., Hofnung, M., and Charbit, A. 1996. Topology of the membrane protein LamB by epitope tagging and a comparison with the X-ray model. J. Bacteriol. 178: 3447–3456.

  10. 10

    Brown, S. 1992. Engineered iron oxide-adhesion mutants of the Escherichia coli phage γ receptor. Proc. Natl. Acad. Sci. USA 89: 8651–8655.

  11. 11

    O'Callaghan, D., Charbit, A., Martineau, P., Leclerc, C., van der Werf, S., Nauciel, C., and Hofnung, M. 1990. Immunogenicity of foreign peptide epitopes expressed in bacterial envelope proteins. Res. Microbiol. 141: 963–969.

  12. 12

    Sousa, C., Cebolla, A., and de Lorenzo, V. 1996. Enhanced metalloadsorption of bacterial cells displaying poly-His peptides. Nature Biotech. 14: 1017–1020.

  13. 13

    Lu, Z., Murray, K.S., Van Cleave V, LaVallie, E.R., Stahl, M.L., and McCoy, J.M. 1995. Expression of thioredoxin random peptide libraries on the Escherichia coli cell surface as functional fusions to flagellin: A system designed for exploring protein-protein interactions. Bio/Technology 13: 366–372.

  14. 14

    Colas, P., Cohen, B., Jessen, T, Grishina, I., McCoy, J., and Brent, R. 1996. Genetic selection of peptide aptamers that recognize cyclin-dependent kinase 2. Nature 380: 548–550.

  15. 15

    Steidler, L., Remaut, E., and Fiers, W. 1993. Pap pili as a vector system for surface for surface exposition of an immunoglobulin G-binding domain of protein A of Staphylococcus aureus in Escherichia coli. J. Bacteriol. 175: 7639–7643.

  16. 16

    Newton, S.M.C., Joys, T.M., Anderson, S.A., Kennedy, R.C., Hovi, M.E., and Stocker, B.A.D. 1995. Expression and immunogenicity of an 18-residue epitope of HIV1 gp41 inserted in the flagellar protein of a Salmonella live vaccine. Res. Microbiol. 146: 203–216.

  17. 17

    Pallesen, L, Poulsen, L.K., Christiansen, G., and Klemm, P. 1995. Chimeric FimH adhesin of type 1 fimbriae: a bacterial surface display system for heterologous sequences. Microbiology 141: 2839–2848.

  18. 18

    van Die, I., van Osterhout, J., van Megen, I., Bergmans, H., Hoekstra, W., Enger-Valk, B., et al. 1990. Expression of foreign epitopes in P-fimbriae of Escherichia coli. Mol. Gen. Genet. 222: 297–303.

  19. 19

    Salmong, G.P.C. and Reeves, R.J. 1993. Membrane traffic wardens and protein secretion in Gram-negative bacteria. Trends Biol. Sci. 18: 7–12.

  20. 20

    Taylor, I.M., Harrison, J.L, Timmis, K.N., and O'Connor, C.D. 1990. The TraT lipoprotien as a vehicle for the transport of foreign antigenic eterminants to the cell surface of Escherichia coli K12 structure-function relationship in tne atrat protein Mol. Microbiol. 4: 1259–1268.

  21. 21

    Laukkanen, M.-L, Teeri, T.T., and Keinanen, K. 1993. Lipid-tagged antibodies: bacterial expression and characterization of a lipoprotein-single-chain antibody fusion protein. Protein Engineer. 6: 449–454.

  22. 22

    Fuchs, R, Breitling, R, Dubel, S., Seehaus, T, and Little, M. 1991. Targeting recombinant antibodies to the surface of Escherichia coli: fusion to a peptido-glycan-associated lipoprotein. Bio/Technology 9: 1369–1372.

  23. 23

    Cornellis, R, Sierra, J.C., Lim Jr., A., Malur, A., Tungpradabkul, S., Tazka, H., et al.1996. Development of new cloning vectors for the production of immunogenic outer membrane fusion proteins in Escherichia coli. Bio/Technology 14: 203–208.

  24. 24

    Francisco, J.A., Earhart, C.F., and Georgiou, G. 1992. Transport and anchoring of 6-lactamase to the external surface of Escherichia coli. Proc. Natl. Acad. Sci. USA 89: 2713–2717.

  25. 25

    Stathopoulos, C., Georgiou, G., and Earhart, C.F. 1996. Characterization of Escherichia coli expressing an Lpp'OmpA(46-159)-PhoA fusion protein localized in the outer membrane. Appl. Microbiol. Biotechnol. 46: 112–119.

  26. 26

    Klauser, T, Pohlner, J., and Meyer, T.F. 1993. The secretion pathway of IgA protease-type proteins in Gram-negative bacteria. Bioessays 15: 799–805.

  27. 27

    Jose, J., Jaehnig, R, and Meyer, T.F. 1995. Common structural features of lgA1 protease-like outer membrane protein. Mol. Microbiol. 18: 378–380.

  28. 28

    Suzuki, T, Lett, M.-C., and Sasakawa, C. 1995. Extracellular transport of VirG protein in Shigella. J. Biol. Chem. 270: 30874–30880.

  29. 29

    Provence, D.L, Stathopoulos, C., and Curtiss, R. III. 1997. Analysis of the extracellular secretion of the putative hemagglutinin Tsh of an avian pathogenic Escherichia coll strain: evidence for an autonomous IgA protease-type secretion. In preparation.

  30. 30

    St. Geme, J.W. III, de la Morena, M.L., and Falkow, S. 1994. A Haemophilus influenzae IgA protease-like protein promotes intimate interaction with human epithelial cells. Mol. Microbiol. 14: 217–233.

  31. 31

    Klauser, T, Pohlner, J., and Meyer, T.F. 1990. Extracellular transport of cholera toxin B subunit using Neisseria IgA protease 6-domain: conformation-dependent outer membrane translocation. EMBO J. 9: 1991–1999.

  32. 32

    Kornacker, M.G. and Pugsley, A.P. 1990. The normally periplasmic enzyme 13-lactamase is specifically and efficiently translocated through the Escherichia coli outer membrane when it is fused to the cell-surface enzyme pullulanase. Mol. Microbiol. 4: 1101–1109.

  33. 33

    Fischetti, V.A. 1996. Gram-positive commensal bacteria deliver antigens to elicit mucosal and systemic immunity. ASM News 62: 405–410.

  34. 34

    Hansson, M., Stahl, S., Nguyen, T.N., Bachi, T, Robert, A., Binz, H, et al. 1992. Expression of recombinant proteins on the surface of the coagulase-negative bacterium Staphylococcus xylosus. J. Bacteriol. 174: 4239–4245.

  35. 35

    Samuelson, R, Hansson, M., Ahlborg, N., Andreoni, C., Gotz, R, Bachi, T, et al.1995. Cell surface display of recombinant proteins on Staphylococcus carnosus. J. Bacteriol. 177: 1470–1476.

  36. 36

    Pozzi, G., Contorni, M., Oggioni, M.R., Manganelli, R., Tommasino, M., Cavalieri, R, and Fischetti, V.A. 1992. Delivery and expression of a heterologous antigen on the surface of streptococci. Infect. Immun. 60: 1902–1907.

  37. 37

    Schreuder, M.P., Brekelmans, S., van der Ende, H., and Klis, F.M. 1993. Targeting of a heterologous protein to the cell wall of Saccharomyces cerevisiae. Yeast 9: 399–409.

  38. 38

    Schreuder, M.R, Deen, C., Boersma, W.J.A., Pouwels, P.M., and Klis, F.M. 1996. Yeast expressing hepatitis B virus surface antigen determinants on its surface: implications for a possible oral vaccine. Vaccine 14: 383–388.

  39. 39

    Shreuder, M.R, Mooren, A.T.A., Toschka, H.Y., Verrips, C.T., and Klis, F.M. 1996. Immobilizing proteins on the surface of yeast cells. Trends Biotechnol. 14: 115–120.

  40. 40

    Boder, E.T. and Wittrup, K.D. 1996. Surface display of a functional single chain Fv antibody in Saccharomyces cerevisiae. Submitted.

  41. 41

    Georgiou, G., Stephens, D.L, Stathopoulos, C., Poetschle H.L, Mendenhall, J., and Earhart, C.F. 1996. Display of B-lactamase on the Escherichia coli surface: outer membrane phenotypes conferred by Lpp′-OmpA′-β-lactamase fusions. Protein Engineer. 9: 239–247.

  42. 42

    Messner, R, Mazid, M.A., Unger, F.M., and Sleytr, U.B. 1992. Artificial antigens. Synthetic carbohydrate haptens immobilized on crystalline bacterial surface layer glycoproteins. Carbohydr. Res. 233: 175–184.

  43. 43

    Jahn-Schmid, B., Messner, P., Unger, F.M., Sleytr, U.B., Scheiner, O., Kraft, D. 1996. Toward selective elicitation of TH1-controlled vaccination responses: vaccine applications of bacterial surface layer proteins. J. Biotechnol. 44: 225–231.

  44. 44

    Goldberg, J.B., Hatano, K., Meluleni, G.M., and Pier, G.B. 1992. Cloning and surface expression of Pseudomonas aeruginosa O antigen in Escherichia coli. Proc. Natl. Acad. Sci. USA 89: 10716–10720.

  45. 45

    Scott, J.K. and Smith, G.R 1990. Searching for peptide ligands with an epitope library. Science 249: 386–390.

  46. 46

    Hill, R.H. and Stockey, R.G. 1996. Phage presentation. Mol. Microbiol. 20: 685–692.

  47. 47

    Lowman, H.B. and Wells, J.A. 1993. Affinity maturation of human growth hormone by monovalent phage display. J. Mol. Biol. 234: 564–578.

  48. 48

    Bonnycastle, L.L.C., Mehroke, J.S., Rashed, M., Gong, X., and Scott, J.K. 1996. Probing the basis of antibody reactivity with a panel of constrained peptide libraries displayed by filamentous phage. J. Mol. Biol. 258: 747–762.

  49. 49

    Markland, W., Ley, A.C., Lee, S.W., and Ladner, R.C. 1996. Iterative optimization of high affinity protease inhibitors using phage display. 1 plasmin. Biochem. 35: 8045–8057.

  50. 50

    Wang, C.I., Yang. Q., and Craik, C.S. 1996. Phage display of proteases and macromolecular inhibitors. Methods Enzymol. 267: 28–51.

  51. 51

    Matthews, D.J. and Wells, J.A. 1993. Substrate phage: Selection of protease substrates by monovalent phage display. Science 260: 113–117.

  52. 52

    Choo, Y. and Klug, A. 1994. Toward a code for the interactions of zinc fingers with DMA: Selection of randomized zinc fingers displayed on phage. Proc. Natl. Acad. Sci. USA 91: 11163–11167.

  53. 53

    Burton, D.R. and Barbas III, C.F. 1994. Human antibodies from combinatorial libraries. Adv. Immunol. 57: 191–281.

  54. 54

    Harrison, J.L., Williams, S.C., Winter, G., and Nissim, A. 1996. Screening of phage antibody libraries. Meth. Enzymol. 267: 109–115.

  55. 55

    Tang, Y, Jiang, N., Prakh, C., and Hilvert, D. 1996. Selection of linkers for a catalytic single chain antibody using phage display technology. J. Biol. Chem. 271: 15682–15686.

  56. 56

    Francisco, J.A., Campbell, R., Iverson, B.L, and Georgiou, G. 1993. Production and fluorescence-activated cell sorting of Escherichia coli expressing a functional antibody fragment on the external surface. Proc. Natl. Acad. Sci. USA 90: 10444–10448.

  57. 57

    Adey, N.B., Mataragnon, A.H., Rider, J.E., Carter, J.M., and Kay, B.K. 1995. Characterization of phage that binds plastic from phage-displayed random peptide libraries. Gene 156: 27–31.

  58. 58

    Short, M.K., Jeffrey, P.O., Kwong, R., and Margolies, M.N. 1995. Contribution of antibody heavy chain CDR1 to digoxin binding analyzed by random mutagenesis of phage-displayed Fab 26-10. J. Biol. Chem. 270: 28541-28550.

  59. 59

    Knappik, A. and Pluckthun, A. 1995. Engineered turns of a recombinant antibody improve its in vivo folding. Protein Eng. 8: 81–89.

  60. 60

    Daugherty, P., Chen, G., Iverson, B.L., and Georgiou, G. 1997. Isolation of high affinity antibodies from libraries displayed on the surface of bacteria. In preparation.

  61. 61

    Crameri, A., Cwirla, S., and Stemmer, W.P.C. 1996. Construction and evolution of antibody-phage libraries by DMA shuffling. Nature Medic. 2: 100–102.

  62. 62

    Chen, G., Cloud, J., Georgiou, G., and Iverson, B.L. 1996. A quantitative immuno-assay utilizing Escherichia coli cells possessing surface-exposed single chain Fv molecules. Biotechnol. Progr. 12: 572–574.

  63. 63

    Griffiths, D. et al. 1993. Human anti-self antibodies with high specificity from phage display libraries. EMBO J. 12: 725–734.

  64. 64

    Yang, W.-R, Green, K., Pinz-Sweeney, S., Briones, A.T., Burton, D.R., and Barbas III, C.F. 1996.CDR walking mutagenesis for the affinity maturation of a potent human anti-HIV antibody into the picomolar range. J. Mol. Biol. 254: 392-403.

  65. 65

    Leary, J.F., McLaughlin, S.R., and Kavanau, K. 1995. New methods for detection, analysis and isolation of rare cell populations. SPIE 2678: 240–253.

  66. 66

    Curtiss, R. III. 1990. Antigen delivery systems for analysing host immune responses and for vaccine development. Trends Biotechnol. 8: 237–240.

  67. 67

    Roberts, M., Chatfield, S.N., Dougan, G. 1994. Salmonella as carriers of heterologous antigens, pp. 27–58 in Novel delivery systems for oral vaccines. O'Hagan, D.T. (ed.). CRC Press, Inc.

  68. 68

    Curtiss, R. III. 1990. Attenuated Salmonella strains as live vectors for the expression of foreign antigens, pp. 161–188 in New generation vaccines. Woodrow, G.C. and Levine, M.M. (eds.). Marcel Dekker, Inc.

  69. 69

    Cardenas, L and Clements, J.D. 1992. Oral immunization using live attenuated Salmonella spp. as carriers of foreign antigens. Clin. Microbiol. Rev. 5: 328–342.

  70. 70

    Cirillo, J.D., Stover, C.K., Bloom, B.R., Jacobs, W.R., Jr., Barletta, R.G. 1995. Bacterial vaccine vectors and Bacillus Calmette-Guerin. Clin. Infect. Dis. 20: 1001–1009.

  71. 71

    Fortaine, A., Arondel, J., and Sansonetti, P.J. 1990. Construction and evaluation of live attenuated vaccine strains of Shigella flexneri and Shigella dysenteriae 1. Res. Microbiol. 141: 907–912.

  72. 72

    Curtiss, R. III, Doggett, T, Nayak, A.R., and Srinivason, J. 1996. Strategies for the use of live recombinant avirulent bacterial vaccines for mucosal immunization, pp. 499–511 in Essentials of mucosal immunology. Kagnoff, M.F. and Kiyono, H. (eds.). Academic Press, Inc.

  73. 73

    Formal, S.B., Baron, L.S., Kopecko, D.J., Powell, C., and Life, C.A. 1981. Construction of a potent bivalent vaccine strain: introduction of Shigella sonnei form I antigen genes into the galE S. typhi Ty21a typhoid vaccine strain. Infect. Immun. 34: 746–750.

  74. 74

    van de Verg, L, Herrington, D.A., Murphy, J.R., Wasserman, S.S., Formal, S.B., and Levine, M.M. 1990. Specific immunoglobulin A-secreting cells in peripheral blood of humans following oral immunization with a bivalent Salmonella typhi-Shigella sonnei vaccine or infection by pathogenic S. sonnei. Infect. Immun. 58: 2002-2004.

  75. 75

    Stevenson, G. and Manning, R.A. 1985, Galactose epimeraseless (galE) mutant G30 of Salmonella typhimurium is a good potential live oral vaccine carrier for fimbrial antigens. FEMS Microbiol. Lett. 28: 317–321.

  76. 76

    Dunn, M., AI-Ramadi, B.K., Barthold, S.-W., Flavell, R.A., and Fikrig, E. 1995. Oral vaccination with an attenuated Salmonella typhimurium strain expressing Borrelia burgdorferi OspA prevents murine Lyme Borreliosis. Infect. Immun. 63: 1611–1614.

  77. 77

    Newton, S.M., Jacob, C., and Stocker, B.A.D. 1989. Immune responses to cholera toxin epitope inserted in Salmonella flagellin. Science 244: 70–72.

  78. 78

    Schorr, J., Knapp, B., Hundt, E., Kupper, H.A., and Amman, E. 1991. Surface expression of malarial antigens in Salmonella typhimurium: induction of serum antibody response upon oral vaccination of mice. Vaccine 9: 675–681.

  79. 79

    Hess, J., Gentschev, I., Miko, D., Welzel, M., Ladel, C., Goebel, W., and Kaufmann, S.H.E. 1996. Superior efficacy of secreted over somatic antigen display in recombinant Salmonella vaccine induced protection against listeriosis. Proc. Natl. Acad. Sci. USA 93: 1458–1463.

  80. 80

    Janssen, R., Wauben, M., Zee, R., Tommassen, J. 1994. Immunogenicity of a mycobacterial T-cell epitope expressed in outer membrane protein PhoE of E. coli. Vaccine 12: 406–409.

  81. 81

    Ruppert, A., Arnold, N., and Hobom, G. 1994. OmpA-FMDV VP1 fusion protein: production, cell surface exposure and immune responses to the major antigenic domain of foot-and-mouth disease virus. Vaccine 12: 492-498.

  82. 82

    Charbit, A., Sobczak, E., Michel, M-L, Molla, A., Tiollais, P., and Hofnung, M. 1987. Presentation of two epitopes of the preS2 region of hepatitis B virus on live recombinant bacteria. J. Immunol. 139: 1644–1658.

  83. 83

    Leclerc, C., Charbit, A., Molla, A., and Hofnung, M. 1989. Antibody response to a foreign epitope expressed at the surface of recombinant bacteria: importance of the route of immunization. Vaccine 7: 242–248.

  84. 84

    Agterberg, M., Adriaanse, H., Barteling, S., van Maanen, K., and Tommassen, J. 1990. Protection of guinea-pigs against foot-and-mouth disease virus by immunization with a PhoE-FMDV hybrid protein. Vaccine 8: 438–440.

  85. 85

    Medaglini, D., Pozzi, G., King, T.R, and Fischetti, V.A. 1995. Mucosal and systemic immune responses to a recombinant protein expressed on the surface of the oral commensal bacterium Streptococcus gordonii after oral colonization. Proc. Natl. Acad. Sci. USA 92: 6868–6872.

  86. 86

    Ryd, M., Verma, N., and Lindberg, A.A. 1992. Induction of a humoral immune response to a Shiga toxin B subunit epitope expressed as a chimeric LamB protein in a Shigella flexneri live vaccine strain. Microbiol. Pathogen. 12: 399–407.

  87. 87

    Renauld-Mongenie, G., Mielcarek, N., Cornette, J., Schacht, A.-M., Capron, A., Riveau, G., and Locht, C. 1996. Induction of mucosal immune responses against a heterologous antigen fused to a filamentous hemagglutinin after intranasal immunization with recombinant Bordetella petrussis. Proc. Natl. Acad. Sci. USA 93: 7944–7949.

  88. 88

    Goding, J.W. 1978. Use of Staphylococcal protein A as an immunological reagent. J. Immunol. Meth. 20: 241–254.

  89. 89

    Rantamaki, L.K. and Muller, H.-R 1995. Purification of goat immunoglobulin G1 (lgG1) and lgG2 antibodies by use of Streptococcus dysgalactiae cells with Fc receptors. Veter. Immunol. Immunopath. 45: 115–126.

  90. 90

    Freeman, A., Abramov, S., and Georgiou, G. 1996. Fixation and stabilization of E. coli cells displaying genetically engineered cell surface proteins. Biotechnol. Bioeng. 52: 625–630.

Download references

Author information

Affiliations

  1. Department of Biology, Washington University, St. Louis, MO, 63130

    • George Georgiou
    • , Christos Stathopoulos
    • , Amiya R. Nayak
    •  & Roy Curtiss III
  2. Department of Chemistry and Biochemistry, University of Texas, Austin, TX, 78712

    • Brent L. Iverson
  3. Department of Chemical Engineering, University of Texas, Austin, TX, 78712

    • Patrick S. Daugherty

Authors

  1. Search for George Georgiou in:

  2. Search for Christos Stathopoulos in:

  3. Search for Patrick S. Daugherty in:

  4. Search for Amiya R. Nayak in:

  5. Search for Brent L. Iverson in:

  6. Search for Roy Curtiss III in:

About this article

Publication history

Received

Accepted

Issue Date

DOI

https://doi.org/10.1038/nbt0197-29

Further reading