Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research
  • Published:

Catalytical Potency of β-Glucosidase from the Extremophile Pyrococcus furiosus in Glucoconjugate Synthesis

Abstract

The extremely thermostable wild type and recombinant β-glucosidases, from Pyrococcus furiosus, served as catalysts for the biotransformation of new glucoconjugates at elevated temperatures. In conversion experiments using the transglucosylation approach, the free or immobilized enzyme accepted primary and even tertiary organic alcohols, as well as primary and secondary artificial organosilicon alcohols, as aglycones. Cellobiose served as the glucose donor. The products obtained were purified by liquid chromatography and analyzed. Using β-glucosidase a wide variety of products were synthesized. Due to the very broad structural diversity of the aglycones linked to the 1-β-O-D-glucose, this β-glucosidase seems to be a useful biocatalyst for regio- and stereoselective sugar derivative synthesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Adams, M. W. W., Perler, F. B. and Kelly, R. M. 1995. Extremozymes: expanding the limits of biocatalysis. Bio/Technology 13: 662–668.

    CAS  PubMed  Google Scholar 

  2. Hodgson, J. 1995. New formulas for carbohydrates. Bio/Technology 13: 38–41.

    CAS  PubMed  Google Scholar 

  3. Nilsson, K. G. I. 1991. Enzymatic synthesis of complex carbohydrates and their glycosides, p. 117–178. In: Applied Biocatalysis, Vol. 1. Blanch, H. W. and Clark, D. S. (Eds.). Dekker Inc., New York.

    Google Scholar 

  4. Kengen, S. W. M., Luesink, E. J., Stams, A. J. M. and Zehnder, A. J. B. 1993. Purification and characterization of an extremely thermostable β-glucosidase from the hyperthermophilic archaeon Pyrococcus furiosus. Eur. J. Biochem. 213: 305–312.

    Article  CAS  Google Scholar 

  5. Fiala, G. and Stetter, K. O. 1986. Pyrococcus furiosus sp. nov. represents a novel genus of marine heterotrophic archaebacteria growing optimally at 100°C. Arch. Microbiol. 145: 56–61.

    Article  CAS  Google Scholar 

  6. Woese, C.R., Kandler, O. and Wheelis, M. L. 1990. Towards a natural system of organisms: Proposal for the domains Archae, Bacteria, and Eucarya. Proc. Natl. Acad. Sci. USA 87: 4576–4579.

    Article  CAS  Google Scholar 

  7. Kengen, S. W. M. and Stams, A. J. M. 1994. An extremely thermostable (β-glucosidase from the thermophilic archaeon Pyrococcus furiosus; a comparison with other glycosidases. Biocatalysis 11: 79–88.

    Article  CAS  Google Scholar 

  8. Voorhorst, W. G. B., Eggen, R. I. L., Luesink, E. J. and d de Vos, W. M. 1995. Characterization of the celbB gene coding for the β-glucosidase from the hyperthermophilic archaeon Pyrococcus furiosus and its expression and site-directed Mutation in Escherischia coli. J. Bacteriol. 177(24). In press.

    Article  CAS  Google Scholar 

  9. Gunata, Z., Vallier, M. J., Sapis, J. C., Baumes, R. and Bayonove, C. 1994. Enzymatic synthesis of monoterpenyl (β-D-glucosides by various β-glucosidases. Enzyme Microbial Technology 16: 1055–1058.

    Article  CAS  Google Scholar 

  10. Vic, G., Biton, J., Le Beller, D., Michel, J. -M. and Thomas, D. 1995. Enzymatic glucosylation of hydrophobic alcohols in organic medium by the reverse hydrolysis reaction using almond-β-D-glucosidase. Biotechnol. Bioengin. 46: 109–116.

    Article  CAS  Google Scholar 

  11. Vulfson, E. N., Patel, R., Beecher, J. E., Andrews, A. T. and Law, B. A. 1990. Glycosidases in organic solvents: I. Alkyl-β-glucoside synthesis in a water-organic two-phase system. Enzyme Microbial Technology 12: 950–954.

    Article  CAS  Google Scholar 

  12. Laroute, V. and Willemot, R. -M. 1992. Glucoside synthesis by glucoamylase or β-glucosidase in organic solvents. Biotechnology Letters 14: 169–174.

    Article  CAS  Google Scholar 

  13. Ravet, C., Thomas, D. and Legoy, M. D. 1993. Gluco-oligosaccharide synthesis by free and immobilized β-glucosidase. Biotech. and Bioeng. 42: 303–308.

    Article  CAS  Google Scholar 

  14. Tacke, R. and Linoh, H. 1989. Bioorganosilicon chemistry, p. 1143–1206. In: The Chemistry of Organic Silicon Compounds, Part 2. Patai, S. and Rappoport, Z. (Eds.). Wiley, Chichester.

  15. Fischer, L. 1995. Capacity of the yeast Trigonopsis variabilis (DSM 70714) for the enantioselective reduction of organosilikon compounds. Adv. in Mol. and Cell Biol. In press.

  16. Trincone, A., Improta, R., Nucci, R., Rossi, M. and Gambacorta, A. 1994. Enzymatic synthesis of carbohydrate derivatives using β-glucosidase of Sulfolobus solftaricus. Biocatalysis 10: 195–210.

    Article  CAS  Google Scholar 

  17. Trincone, A. and Pagnotta, E. 1995. Efficient chemoselective synthesis of 3,4′,dihydroxypropiophenone 3-O-β-D-glucoside by thermophilic β-glycosi-dase from Sulfolobus solfactaricus. Biotechnol. Lett. 17: 45–48.

    Article  CAS  Google Scholar 

  18. Fischer, L., Bromann, R. and Wagner, F. 1995. Enantioselective synthesis of several 1-O-β-D-glucoconjugates using almond β-glucosidase. Biotechnol. Lett. 17(11):1169–1174.

    Article  CAS  Google Scholar 

  19. Kezdy, F. and Bender, M. 1962. The kinetics of the α-chymotrypsin-catalyzed hydrolysis of p-nitrophenyl acetate. Biochem. 1: 1097–1104.

    Article  CAS  Google Scholar 

  20. Organikum . 1988. VEB Deutscher Verlag der Wissenschaften, Berlin: 411.

  21. Tacke, R., Wagner, S. A., Brakmann, S., Wuttke, F., Eilert, U., Fischer, L. and Syldatk, C. 1993. Synthesis of acetyldimethyl(phenyl)silane and its enantioselective conversion into (R)-(1-hydroxyethyl)dimethyl(phenyl)silane by plant cell suspension cultures of Symphytum officinale L. and Ruta graveolens L. J. Organomet. Chem. 458: 13–17.

    Article  CAS  Google Scholar 

  22. Syldatk, C., Andree, H., Stoffregen, A., Wagner, F., Stumpf, B., Ernst, L., Zilch, H. and Tacke, R. 1987. Enantioselective reduction of acetyl-dimethylphenylsilane by Trigonopsis variabilis (DSM 70714)., Appl. Microbiol. Biotechnol. 27: 152–158.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lutz Fischer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fischer, L., Bromann, R., Kengen, S. et al. Catalytical Potency of β-Glucosidase from the Extremophile Pyrococcus furiosus in Glucoconjugate Synthesis. Nat Biotechnol 14, 88–91 (1996). https://doi.org/10.1038/nbt0196-88

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0196-88

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing