Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research
  • Published:

Transgenes Display Stable Patterns of Expression in Apple Fruit and Mendelian Segregation in the Progeny

Abstract

We report here the stable expression and Mendelian segregation of transgenes in a tree species. We present physiological, biochemical, and molecular evidence for stable transgene expression of both nopaline synthase (nos) and the cotransferred gene neomycin phosphotransferase (nptII) in the flesh of apple fruit 7 years after the initial transformation. Evidence based on callus bioassays, gene expression assays, Southern blotting, and PCR data show a 1:1 segregation among 74 seedlings of the R1 progeny for the nos gene but a 3:1 segregation for the cotransferred nptII gene among a subpopulation of 47 seedlings. Southern blot data and the existence of a significant population of seedlings that possessed the nptII gene but not the nos gene have led us to propose the existence of two nptII loci and one nos locus in the original transgenic tree.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Picton, S., Barton, S. L., Bouzayen, M., Hamilton, A. J. and Grierson, D. 1993. Altered fruit ripening and leaf senescence in tomatoes expressing an antisense ethylene-forming enzyme transgene. The Plant J. 3: 469–482.

    Article  CAS  Google Scholar 

  2. Dandekar, A. M., McGranahan, G. H., Uratsu, S. L., Leslie, C., Vail, P. V., Tebbets S., Hoffman D., Driver J., Viss, P. and James, D. J. 1992. Engineering for apple and walnut resistance to codling moth, p. 741–747. In: Brighton Crop Protection Conference—Pests and Diseases, Vol. 2.

    Google Scholar 

  3. James, D. J., Passey, A. J., Barbara, D. J. and Bevan, M. W. 1989. Genetic transformation of apple (Malus pumila Mill.) using a disarmed Ti-binary vector. Plant Cell Reports 7: 658–661.

    CAS  PubMed  Google Scholar 

  4. Bevan, M. W. 1984. Binary Agrobacterium vectors for plant transformation. Nuc. Acids Res. 12: 8711–8721.

    Article  CAS  Google Scholar 

  5. Horsch, R. B., Fry, J. E., Hoffman, N. L., Eicholtz, D., Rogers, S. G. and Fraley, R. T. 1985. A simple and generalized method of transferring genes into plants. Science 227: 1229–1231.

    Article  CAS  Google Scholar 

  6. Draper, J., Scott, R. and Armitage, P. 1988. Plant Genetic Transformation and Gene Expression—A Laboratory Manual, p. 301–302. Blackwell Scientific Publications, Oxford.

  7. Blake, N. K., Ditterline, R. L. and Stout, R. G. 1991. Polymerase chain reaction used for monitoring multiple gene integration in Agrobacterium-mediated transformation. Crop Science 31: 1686–1688.

    Article  CAS  Google Scholar 

  8. Finnegan, J. and McElroy, D. 1994. Transgene inactivation: plants fight back! Bio/Technology 12: 883–888.

    Google Scholar 

  9. Walter, C., Broer, I., Hillemann, D. and Phler, A. 1992. High frequency, heat treatment-induced inactivation of the phosphinothricin resistance gene in transgenic single cell suspension cultures of Medicago sativa. Mol. Gen. Genet. 235: 189–196.

    Article  CAS  PubMed  Google Scholar 

  10. Jefferson, R. A. 1987. Assaying chimeric genes in plants-the GUS gene fusion system. Plant Mol. Biol. Rep. 5: 387–405.

    Article  CAS  Google Scholar 

  11. Sato, T. and Theologis, A. 1989. Cloning the mRNA encoding 1-aminocyclo-propane-1-carboxylate syntease, the key enzyme for ethylene biosynthesis in plants. Proc. Nat'l. Acad. Sci. USA 86: 6621–6625.

    Article  CAS  Google Scholar 

  12. Dong, J. G., Kim, W. T., Yip, W. K., Thompson, G. A., Li, L., Bennett, A. B. and Yang, S. F. 1991. Cloning of a cDNA encoding 1-aminocyclopropane-1-carboxylate synthase and expression of its mRNA in ripening apple fruit. Planta 185: 38–45.

    Article  CAS  PubMed  Google Scholar 

  13. Dong, J. G., Olson, D., Silverstone, A. and Yang, S. F. 1992. Sequence for a 1-aminocyclopropane-1-carboxylate oxidase from apple fruit. Plant Physiol. 98: 1530–1531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Church, R. and Williams, R. R. 1978. Pollination of pome fruits. Report of the Long Ashton Research Station for 1977, p. 21–22.

  15. James, D. J. and Dandekar, A. M. 1991. Regeneration and transformation of apple (Malus pumila Mill.). Plant Tissue Culture Manual B8, 1–18.

    Google Scholar 

  16. Otten, L.A.B.M. and Schilperoort, R.A. 1978. A rapid microscale method for the detection of lysopine and nopaline dehydrogenase activities. Biochim. Biophys. Acta 527: 494–500.

    Google Scholar 

  17. Nagel, R. J., Manners, J. M. and Birch, R. G. 1992. Evaluation of an ELISA assay for rapid detection and quantitation of neomycin phosphotransferase II in transgenic plants. Plant Mol. Biol. Rep. 10: 263–272.

    Article  CAS  Google Scholar 

  18. Murashige, T. and Skoog, F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15: 473–497.

    Article  CAS  Google Scholar 

  19. Dellaporta, S. L., Wood, J. and Hicks, J. B. 1983. A plant DNA minipreparation: version II. Plant Mol. Biol. Rep. 1: 19–21.

    Article  CAS  Google Scholar 

  20. Hamill, J. D., Rounsley, S., Spencer, A., Todd, G. and Rhodes, M. J. C. 1991. The use of the polymerase chain reaction in plant transformation studies. Plant Cell Reports 10: 221–224.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. James.

Rights and permissions

Reprints and permissions

About this article

Cite this article

James, D., Passey, A., Baker, S. et al. Transgenes Display Stable Patterns of Expression in Apple Fruit and Mendelian Segregation in the Progeny. Nat Biotechnol 14, 56–60 (1996). https://doi.org/10.1038/nbt0196-56

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0196-56

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing