Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Stable Transformation of Picea glauca by Particle Acceleration

Abstract

By defining the somatic embryo developmental stage which expressed β-glucuronidase (GUS) at a high level yet was also competent to form embryogenic callus at a high frequency under selection, we obtained transformed Picea glauca (white spruce) embryogenic callus, embryos and seedlings expressing GUS in all cells. Plasmid DNA, containing three chimeric constructs [enhanced cauliflower mosaic virus (CaMV) 35s-GUS, nopaline synthase-neomycin phosphotransferase (NPTII), and CaMV 35s-Bacillus thuringiensis (B.t.) cryIA endotoxin] was introduced into four developmental stages of white spruce somatic embryos by particle acceleration. Transient expression was observed in all of the stages of somatic embryos tested, but transformed embryogenic callus was induced only from the two most advanced. Embryogenic callus was identified by histochemical staining for GUS as early as 6 weeks following particle acceleration. All GUS positive embryogenic callus lines also showed NPTII activity. Incorporation of the introduced genes into the genome was confirmed by PCR and Southern blot analysis of embryogenic callus and regenerated transformed plants. Plants derived from several transformed embryogenic callus lines are currently undergoing acclimatization in the greenhouse. Spruce budworm (Chorisoneura fumiferana) feeding trials with embryogenic callus and transformed seedlings indicate a low, sublethal level of B.t. expression.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

References

  1. Sederoff, R., Stomp, A.-M., Chilton, W.S. and Moore, L.W. 1986. Gene transfer into loblolly pine by Agmbacterium tumefaciens. Bio/Technology 4: 647–649.

    CAS  Google Scholar 

  2. Ellis, D., Roberts, D., Sutton, B., Lazaroff, W., Webb, D. and Flinn, B. 1989. Transformation of white spruce and other conifer species by Agmbacterium tumefaciens. Plant Cell Reports 8: 16–20.

    Article  CAS  PubMed  Google Scholar 

  3. Morris, J.W., Castle, L.A. and Morris, R.O. 1989. Efficacy of different Agrobacterium tumefaciens strains in transformation of pinaceous gymnosperms. Physiol. Mol. Plant Path. 34: 451–461.

    Article  Google Scholar 

  4. Loopstra, C.A., Stomp, A.-M. and Sederoff, R.R. 1990. Agrobacterium-mediated DNA transfer in sugar pine. Plant Mol. Biol. 15: 1–9.

    Article  CAS  PubMed  Google Scholar 

  5. Huang, Y., Diner, A.M. and Karnosky, D.F. 1991. Agrobacterium rhizogenes-mediated genetic transformation and regeneration of a conifer: Larix decidua. In Vitro Cell. Dev. Biol. 27: 201–207.

    Article  Google Scholar 

  6. Tautorus, T.E., Fowke, L.C. and Dunstan, D.I. 1991. Somatic embryogenesis in conifers. Can. J. Bot. 69: 1873–1899.

    Article  Google Scholar 

  7. Klein, T.M., Arentzen, R., Lewis, P.A. and Fitzpatrick-McElligott, S. 1992. Transformation of microbes, plants and animals by particle bombardment. Bio/Technology 10: 286–291.

    CAS  Google Scholar 

  8. Duchesne, L.C. and Charest, P.J. 1991. Transient expression of the β-glucuronidase gene in embryogenic callus of Picea mariana following microprojection. Plant Cell Reports 10: 191–194.

    Article  CAS  PubMed  Google Scholar 

  9. Stomp, A.-M., Weissinger, A. and Sederoff, R.R. 1991. Transient expression from microprojectile-mediated DNA transfer in Pinus taeda. Plant Cell Reports 10: 187–190.

    Article  CAS  PubMed  Google Scholar 

  10. Ellis, D.D., McCabe, D., Russell, D., Martinell, B. and McCown, B.H. 1991. Expression of inducible angiosperm promoters in a gymnosperm, Picea glauca (white spruce). Plant Mol. Biol. 17: 19–27.

    Article  CAS  PubMed  Google Scholar 

  11. Ellis, D.D. 1992. Transformation in Picea, In press. Biotech, in Ag. & For. Vol. 17, Trees IV. Y.P.S. (Ed. ). Springer-Verlag, Berlin.

    Google Scholar 

  12. McCabe, D.E., Swain, W.F., Martinell, B.J. and Christou, P. 1988. Stable transformation of soybean (Glycine max) by particle acceleration. Bio Technology 6: 923–926.

    Google Scholar 

  13. Gupta, P.K. and Durzan, D.J. 1987. Biotechnology of somatic polyembryogenesis and plant regeneration of loblolly pine. Bio/Technology 5: 147–151.

    Google Scholar 

  14. Ramachandran, R., Raffa, K.E., Miller, M.J., Ellis, D.D. and B.H., 1992. Behavioral and sublethal responses of spruce budworm and fall webworm larvae to Bacillus thuringiensis CryIA(a) toxin. Environ. Entomol. In press.

    Google Scholar 

  15. McCown, B.H., McCabe, D.E., Russell, D.R., Robison, D.J., Barton, K.A. and Raffa, K.F. 1991. Stable transformation of Populus and incorporation of pest resistance by electric discharge particle acceleration. Plant Cell Reports 9: 590–594.

    Article  CAS  PubMed  Google Scholar 

  16. Sellmer, J.C. 1991. Examination and manipulation of Populus cell competence for direct gene transfer. Ph. D. Thesis, University of Wisconsin-Madison.

    Google Scholar 

  17. Serres, R., Stang, E., McCabe, D., Russell, D., Mahr, D. and McCown, B. 1992. Gene transfer using electric discharge particle bombardment and recovery of transformed cranberry plants. J. Amer. Sioc. Hort. Sci. 117: 174–180.

    CAS  Google Scholar 

  18. Becwar, M.R., Wann, S.R., Johnson, M.A., Verhagen, S.A., Feirer, R.P. and Nagmani, R. 1988. Development and characterization of in vitro embryogenic systems in conifers, p. 1–18. In: Somatic Cell Genetics of Woody Plants. M.R. Ahuja (Ed. ). Kluwer Acdemic Publishers, Dordrecht, Netherland.

    Google Scholar 

  19. Eastman, P.A., Webster, F.B., Pitel, J.A. and Roberts, D.R. 1991. Evaluation of somaclonal variation during somatic embryogenesis of interior spruce {Picea glauca engelmannii complex) using culture morphology and isozyme analysis. Plant Cell Reports 10: 425–430.

    Article  CAS  PubMed  Google Scholar 

  20. Robertson, D., Ackley, R., Weissinger, A., Stomp, A.-M. and Sederoff, R. 1991. Stable transformation of Norway spruce embryogenic callus through micro-projectile bombardment. In: Proceedings of 3rd International Congress of Plant Molecular Biology, Tucson, AZ. Hallick, R. B. (Ed.). Abstract ♯1036.

    Google Scholar 

  21. Roberts, D.R., Sutton, B.C.S. and Flinn, B.S. 1990. Synchronous and high frequency germination of interior spruce somatic embryos following partial drying at high relative humidity. Can. J. Bot. 68: 1086–1090.

    Article  Google Scholar 

  22. Buchholz, J.T. and Stiemert, M.L. 1945. Development of seeds and embryos in Pinusponderosa, with a special reference to seed size. Trans Ill. State Acad. Sci. 38: 27–50.

    Google Scholar 

  23. Hakman, I. and von Arnold, S. 1985. Plantlet regeneration through somatic embryogenesis in Picea abies (Norway Spruce). J. Plant Physiol. 121: 149–158.

    Article  CAS  Google Scholar 

  24. Jefferson, R.A. 1987. Assaying chimeric genes in plants: the GUS fusion system. Plant Mol. Bio. Rep. 5(4): 387–405.

    Article  CAS  Google Scholar 

  25. Saiki, R.K., Gelfaud, D.H., Stoffel, S., Scharf, S.J., Higuchi, R., Horn, G.T., Mullis, K.B. and Erlich, H.A. 1988. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239: 487–494.

    Article  CAS  PubMed  Google Scholar 

  26. Barton, K.A., Whiteley, H.R. and Yang, N.-S 1987. Bacillus thuringiensis δ-endotoxin expressed in transgenic Nicotiana tabacum provides resistance to lepidopteran insects. Plant Physiol. 85: 1103–1109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Marcotte, W.R. Jr, Russell, S.H. and Quatrano, R.S. 1989. Abscisic acid-responsive sequences from the Em gene of wheat. The Plant Cell 1: 969–976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dellaparta, S.L., Wood, J. and Hicks, J.B. 1983. A plant DNA minipreparation: Version II. Plant Mol. Biol. Reporter 1(4): 19–21.

    Article  Google Scholar 

  29. Hughes, D.W. and Galau, G. 1988. Preparation of RNA from cotton leaves and pollen. Plant Mol. Biol. Reporter 6(4): 253–257.

    Article  CAS  Google Scholar 

  30. Christou, P., Swain, W.F., Yans, N.-S, McCabe, D.E. 1989. Inheritance and expression of foreign genes in transgenic soybean plants. Proc. Natl. Acad. Sci. USA 86: 7500–7504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ellis, D., McCabe, D., McInnis, S. et al. Stable Transformation of Picea glauca by Particle Acceleration. Nat Biotechnol 11, 84–89 (1993). https://doi.org/10.1038/nbt0193-84

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0193-84

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing