Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research
  • Published:

The Effect of Folding Catalysts on the In Vivo Folding Process of Different Antibody Fragments Expressed in Escherichia coli

Abstract

The Fv and Fab fragment and both orientations of the single-chain Fv fragment (VH-linker-VL and VL-linker-VH) of an antibody can be expressed in functional form in the periplasm of Escherichia coli, but the yield of these correctly assembled proteins is limited by the periplasmic folding process. While the periplasmic E. coli disulfide isomerase DsbA is required for this assembly, its functional over-expression does not significantly change the folding limit. Similarly, the functionally over-expressed E. coli proline cis-trans isomerase does not change the amount of all but one of the antibody fragments, not even if DsbA is over-expressed as well. Therefore, aggregation steps in the periplasm appear to compete with periplasmic folding, and they may occur before disulfide formation and/or proline cis-trans isomerization takes place and be independent of their extent.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Skerra, A. and Plückthun, A. 1988. Assembly of a functional immunoglobulin Fv fragment in Escherichia coli. Science 240: 1038–1041.

    Article  CAS  Google Scholar 

  2. Better, M., Chang, C.P., Robinson, R.R. and Horwitz, A.H. 1988. Escherichia coli secretion of an active chimeric antibody fragment. Science 240: 1041–1043.

    Article  CAS  Google Scholar 

  3. Glockshuber, R., Malia, M., Pfitzinger, I. and Plückthun, A. 1990. A comparison to stabilize immunoglobulin Fv-fragments. Biochemistry 29: 1362–1367.

    Article  CAS  Google Scholar 

  4. Skerra, A. and Plückthun, A. 1991. Secretion and in vivo folding of the Fab fragment of the antibody McPC603 in Escherichia coli—influence of disulfides and cis-prolines. Protein Eng. 4: 971–979.

    Article  CAS  Google Scholar 

  5. Anfinsen, C.B. 1973. Principles that govern the folding of protein chains. Science 181: 223–230.

    Article  CAS  Google Scholar 

  6. Creighton, T.E. 1978. Experimental studies of protein folding and unfolding. Prog. Biophys. Mol. Biol. 33: 231–297.

    Article  CAS  Google Scholar 

  7. Jaenicke, R. 1987. Folding and association of proteins. Prog. Biophys. Mol. Biol. 49: 117–237.

    Article  CAS  Google Scholar 

  8. Fischer, G. and Schmid, F.X. 1990. The mechanism of protein folding. Implications of in vitro refolding models for de novo protein folding and translocation in the cell. Biochemistry 29: 2205–2212.

    Article  CAS  Google Scholar 

  9. Lorimer, G.H. 1992. Role of accessory proteins in protein folding. Curr. Opin. Struct. Biol. 2: 26–34.

    Article  CAS  Google Scholar 

  10. Jaenicke, R. 1991. Protein folding: local structures, domains, subunits, and assemblies. Biochemistry 30: 3147–3161.

    Article  CAS  Google Scholar 

  11. Gething, M.J. and Sambrook, J. 1992. Protein folding in the cell. Nature 355: 33–45.

    Article  CAS  Google Scholar 

  12. Kiefhaber, T., Rudolph, R., Kohler, H.H. and Buchner, J. 1991. Protein aggregation in vitro and in vivo: a quantitative model of the kinetic competition between folding and aggregation. Bio/Technology 9: 825–829.

    CAS  PubMed  Google Scholar 

  13. Fischer, G., Bang, H., Mech, C. 1984. Nachweis einer Enzymkatalyse für die cis-trans-Isomerisierung der Peptidbindung in prolinhaltigen Peptiden. Biomed. Biochem. Acta 43: 1101–1111.

    CAS  Google Scholar 

  14. Brandts, J.F., Halvorson, H.R. and Brennan, M. 1975. Consideration of the possibility that the slow step in protein denaturation reactions is due to cis-trans isomerism of proline residues. Biochemistry 14: 4953–4963.

    Article  CAS  Google Scholar 

  15. Schmid, F.X. and Baldwin, R.L. 1978. Acid catalysis of the formation of the slow-folding species of RNase A: evidence that the reaction is proline isomerization. Proc. Natl. Acad. Sci. USA 75: 4764–4768.

    Article  CAS  Google Scholar 

  16. Schmid, F.X., Grafl, R., Wrba, A. and Beintema, J.J. 1986. Role of proline peptide bond isomerization in unfolding and refolding of ribonuclease. Proc. Natl. Acad. Sci. USA 83: 872–876.

    Article  CAS  Google Scholar 

  17. Grathwohl, C. and Wüthrich, K. 1976. NMR studies of the molecular conformations in the linear oligopeptides H-(I-Ala)n-I-Pro-OH. Biopolymers 15: 2043–2057.

    Article  CAS  Google Scholar 

  18. Juy, M., Lam-Thanh, H., Lintner, K. and Fermandjian, S. 1983. Conformation and mobility of tyrosine side chain in tetrapeptides. Int. J. Pept. Prot. Res. 22: 437–449.

    Article  CAS  Google Scholar 

  19. Stewart, D.E., Sarkar, A. and Wampler, J.E. 1990. Occurence and role of cis peptide bonds in protein structures. J. Mol. Biol. 214: 253–260.

    Article  CAS  Google Scholar 

  20. Kiefhaber, T., Quaas, R., Hahn, U. and Schmid, F.X. 1990. Folding of ribonuclease T1. 1. Existence of multiple unfolded states created by proline isomerization. Biochemistry 29: 3053–3061.

    Article  CAS  Google Scholar 

  21. Fransson, C., Freskgard, P.O., Herbertsson, H., Johansson, A., Jonasson, P., Martensson, L.G., Svensson, M., Jonsson, B.H. and Carlsson, U. 1992. Cis-trans isomerization is rate-determining in the reactivation of denatured human carbonic anhydrase-II as evidenced by proline isomerase. FEBS Letters 296: 90–94.

    Article  CAS  Google Scholar 

  22. Lang, K., Schmid, F.X. and Fischer, G. 1987. Catalysis of protein folding by prolyl isomerase. Nature 329: 268–270.

    Article  CAS  Google Scholar 

  23. Schönbrunner, E.R., Mayer, S., Tropschug, M., Fischer, G., Takahashi, N. and Schmid, F.X. 1991. Catalysis of protein folding by cyclophilins from different species. J. Biol. Chem. 266: 3630–3635.

    PubMed  Google Scholar 

  24. Lin, L.-N., Hasumi, H. and Brandts, J.F. 1988. Catalysis of proline isomerization during protein-folding reactions. Biochim. Biophys. Acta 956: 256–266.

    Article  CAS  Google Scholar 

  25. Goto, Y. and Hamaguchi, K. 1982. Unfolding and refolding of the constant fragment of the immunoglobulin light chain. J. Mol. Biol. 156: 891–910.

    Article  CAS  Google Scholar 

  26. Buchner, J., Brinkmann, U. and Pastan, I. 1992. Renaturation of a single-chain immunotoxin facilitated by chaperones and protein disulfide isomerase. Bio/Technology 10: 682–685.

    CAS  PubMed  Google Scholar 

  27. Liu, J. and Walsh, C.T. 1990. Peptidyl-prolyl cis-trans-isomerase from Escherichia coli: a periplasmatic homolog of cyclophilin that is not inhibited by cyclosporin A. Proc. Natl. Acad. Sci. USA 87: 4028–4032.

    Article  CAS  Google Scholar 

  28. Hayano, T., Takahashi, N., Kato, S., Maki, N. and Suzuki, M. 1991. Two distinct forms of peptidylprolyl-cis-trans-isomerase are expressed separately in periplasmic and cytoplasmic compartments of Escherichia coli cells. Biochemistry 30: 3041–3048.

    Article  CAS  Google Scholar 

  29. Harrison, R.K. and Stein, R.L. 1990. Substrate specificities of the peptidyl prolyl cis-trans isomerase activities of cyclophilin and FK-506 binding protein: evidence for the existence of a family of distinct enzymes. Biochemistry 29: 3813–3816.

    Article  CAS  Google Scholar 

  30. Venetianer, P. and Straub, F.B. 1963. The enzymic reactivation of reduced ribonuclease. Biochim. Biophys. Acta 67: 166–168.

    Article  CAS  Google Scholar 

  31. Goldberger, R.F., Epstein, C.J. and Anfinsen, C.B. 1963. Acceleration of reactivation of reduced bovine pancreatic ribonuclease by a microsomal system from rat liver. J. Biol. Chem. 238: 628–635.

    CAS  PubMed  Google Scholar 

  32. Freedman, R.B., Bulleid, N.J., Hawkins, H.C. and Paver, J.L. 1989. Role of protein disulphide-isomerase in the expression of native proteins. Biochem. Soc. Symp. 55: 167–192.

    CAS  PubMed  Google Scholar 

  33. Parkkonen, T., Kivirikko, K.I. and Pihlajaniemi, T. 1988. Molecular cloning of a multifunctional chicken protein acting as the prolyl 4-hydroxylase β-subunit, protein disulphide-isomerase and a cellular thyroid-hormone binding protein. Biochem. J. 256: 1005–1011.

    Article  CAS  Google Scholar 

  34. Gilbert, H.F. 1990. Molecular and cellular aspects of thiol-disulfide exchange. Adv. Enzymol. 63: 69–172.

    CAS  PubMed  Google Scholar 

  35. Bardwell, J.C.A., McGovern, K. and Beckwith, J. 1991. Identification of a protein required for disulfide bond formation in vivo. Cell 67: 581–589.

    Article  CAS  Google Scholar 

  36. Kamitani, S., Akiyama, Y. and Ito, K. 1992. Identification and characterization of an Escherichia coli gene required for the formation of correctly folded alkaline-phosphatase, a periplasmic enzyme. EMBO J. 11: 57–62.

    Article  CAS  Google Scholar 

  37. Yu, J., Webb, H. and Hirst, T.R. 1992. A homologue of the Escherichia coli DsbA protein involved in disulphide bond formation is required for enterotoxin biogenesis in Vibrio cholerae. Mol. Microbiol. 6: 1949–1958.

    Article  CAS  Google Scholar 

  38. Satow, Y., Cohen, G.H., Padlan, E.A. and Davies, D.R. 1986. Phosphocholine binding immunoglobulin Fab McPC603. J. Mol. Biol. 190: 593–604.

    Article  CAS  Google Scholar 

  39. Skerra, A., Pfitzinger, I. and Plückthun, A. 1991. The functional expression of antibody Fv fragments in Escherichia coli: improved vectors and a generally applicable purification technique. Bio/Technology 9: 273–278.

    CAS  Google Scholar 

  40. Anand, N.N., Mandal, S., MacKenzie, C.R., Sadowska, J., Sigurskjold, B., Young, N.M., Bundle, D.R. and Narang, S.A. 1991. Bacterial expression and secretion of various single-chain Fv genes encoding proteins specific for a Salmonella serotype B O-antigen. J. Biol. Chem. 266: 21874–21879.

    CAS  PubMed  Google Scholar 

  41. Pantoliano, M.W., Bird, R.E., Johnson, S., Asel, E.D., Dodd, S.W., Wood, J.F. and Hardman, K.D. 1991. Conformational stability, folding, and ligand-binding affinity of single-chain-Fv immunoglobulin fragments expressed in Escherichia coli. Biochemistry 30: 10117–10125.

    Article  CAS  Google Scholar 

  42. Pace, C.N. 1990. Measuring and increasing protein stability. Trends Biotechnol. 8: 93–98.

    Article  CAS  Google Scholar 

  43. Kunkel, T.A., Roberts, J.D. and Zakour, R.A. 1987. Rapid and efficient site specific mutagenesis without phenotypic selection. Methods Enzymol. 154: 367–382.

    Article  CAS  Google Scholar 

  44. O'Callaghan, C.H., Morris, A., Kirby, S.M. and Shingler, A.H. 1972. Novel method for detection of β-lactamases by using chromogenic cephalosporin substrate. Antimicrob. Agents Chemother. 1: 283–288.

    Article  CAS  Google Scholar 

  45. Holmgren, A. 1979. Thioredoxin catalyzes the reduction of insulin disulfides by dithiothreitol and dihydrolipoamide. J. Biol. Chem. 254: 9627–9632.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knappik, A., Krebber, C. & Plückthun, A. The Effect of Folding Catalysts on the In Vivo Folding Process of Different Antibody Fragments Expressed in Escherichia coli. Nat Biotechnol 11, 77–83 (1993). https://doi.org/10.1038/nbt0193-77

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0193-77

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing