Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Paper
  • Published:

Saccharomyces Cerevisiae Cells Secreting an Aspergillus Niger β-Galactosidase Grow on Whey Permeate

Abstract

We describe the construction of a lactose-utilizing Saccharomyces cerevisiae that expresses the cDNA for a secreted, thermostable β-galactosidase (lacA) from Aspergillus niger. Yeast cells expressing the lacA gene from the yeast ADH1 promoter on a multicopy plasmid secrete up to 40% of the total P-galactosidase activity into the growth medium. The secreted product is extensively N-glycosylated, and cells expressing the lacA gene grow on whey permeate (4% w/v lactose) with a doubling time of 1.6 hours. Such strains may offer a solution to the increasing problem of waste whey disposal.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Irvine, D.M. and Hall, A.R. 1985. Comprehensive Biotechnology, Vol. 3, 523–567. Moo-young, M. (Ed.). Pergamon Press, Oxford, U.K.

    Google Scholar 

  2. Hahn-Hägerdal, B. 1985. Comparison between immobilized Klyveromyces fragilis and Saccharomyces cerevisiae co-immobilized with β-galactosidase, with respect to continuous ethanol production from concentrated whey permeate. Biotechnol. Bioeng. 27: 914–916.

    Article  Google Scholar 

  3. Sreekrishna, K. and Dickson, R.C. 1985. Construction of strains of Saccharomyces cerevisiae that grow on lactose. Proc. Natl. Acad. Sci. USA 82: 7909–7913.

    Article  CAS  Google Scholar 

  4. O'Leary, V.S., Green, R., Sullivan, B.C. and Holsinger, V.H. 1977. Alcohol production by selected yeast strains in lactase-hydrolysed whey. Biotechnol. Bioeng. 19: 1019–1035.

    Article  CAS  Google Scholar 

  5. Hartmeir, W. 1984. Co-Immobilizates: New biocatalysts for fermentation technology. Process Biochem. 19: 40–42.

    Google Scholar 

  6. Farahnak, F., Seki, T., Dewey, D.Y., Ryu, R. and Ogrydziak, D. 1986. Construction of lactose assimilating and ethanol producing yeasts by protoplast fusion. Appl. Environ. Microbiol. 51: 362–367.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Kotyk, A. and Janacek, K. 1975. Cell Membrane Transport, 134. Plenum Press, New York.

    Book  Google Scholar 

  8. Teeri, T.T., Kumar, V., Lehtovaara, P. and Knowles, J. 1987. Construction of cDNA libraries by blunt end ligation: High frequency cloning of cDNAs from filamentous fungi. Anal. Biochem. 164: 60–67.

    Article  CAS  Google Scholar 

  9. Kumar, V. 1988. Ph.D Thesis (Univ. of London).

  10. Clutterbuck, A.J. 1987. Gene symbols in Aspergillus nidulans. Genet. Res. 21: 291–296.

    Article  Google Scholar 

  11. Boel, E., Hjort, I., Svenesson, B., Norris, F., Norris, K.E. and Fiil, N.P. 1984. Glucoamylase G1 and G2 from Aspergillus niger are synthesized from two different but closely related mRNAs. EMBO J. 3: 1097–1102.

    Article  CAS  Google Scholar 

  12. Gysler, C., Harmsen, J.A.M., Kester, H.C.M., Visser, J. and Heim, J. 1990. Isolation and structure of the pectin lyase D-encoding gene from Aspergillus niger. Gene 89: 101–108.

    Article  CAS  Google Scholar 

  13. Ammerer, G. 1983. Expression of genes in yeast using the ADH1 promoter. Methods in Enzymol. 101: 192–201.

    Article  CAS  Google Scholar 

  14. Futcher, A.B. and Cox, B.S. 1984. Copy number and the stability of 2μm circle-based artificial plasmids of Saccharomyces cerevisiae. J. Bacteriol. 157: 283–290.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Botstein, D., Falco, S.C., Stewart, S.E., Brennan, M., Scherer, S., Stinchcomb, D.T., Struhl, K. and Davis, R.W. 1979. Sterile host yeasts (SHY): a eukaryotic system for biological containment for recombinant DNA experiments. Gene 8: 17–24.

    Article  CAS  Google Scholar 

  16. Schekman, R. 1985. Protein localization and membrane traffic in yeast. Ann. Rev. Cell Biol. 1: 115–143.

    Article  CAS  Google Scholar 

  17. Boeke, J.D., Garfinkel, D.J., Styles, C.A. and Fink, G.R. 1985. Ty elements transpose through an RNA intermediate. Cell 40: 491–500.

    Article  CAS  Google Scholar 

  18. Das, R.C., Shultz, J.L. and Lehman, D.J. 1989. Alpha-factor leader sequence-directed transport of Escherichia coli β-galactosidase in the secretory pathway of Saccharomyces cerevisiae. Mol. Gen. Genet. 218: 240–248.

    Article  CAS  Google Scholar 

  19. Vanoni, M., Porro, D., Martegani, E. and Alberghina, L. 1989. Secretion of Escherichia coli β-galactosidase in Saccharomyces cerevisiae using the signal sequence from the glucoamylase encoding STA2 gene. Biochem. Biophys. Res. Commun. 164: 1331–1338.

    Article  CAS  Google Scholar 

  20. Penttilä, M.E., Suihko, M.-L., Lehtinen, U., Nikkola, M. and Knowles, J.K.C. 1987. Construction of brewers yeast secreting fungal endo-β-glucanase. Curr. Genet. 12: 413–420.

    Article  Google Scholar 

  21. Nevalainen, K.M.H. 1981. Induction, isolation and characterization of Aspergillus niger mutant strains producing elevated levels of β-galactosidase. Appl. Environ. Microbiol. 41: 593–596.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Yanisch-Perron, C., Vieira, J. and Messing, J. 1985. Improved M13 cloning vectors and strains: Nucleotide sequence of the M13mp18 and pUC19 vectors. Gene 33: 103–119.

    Article  CAS  Google Scholar 

  23. Sherman, F., Fink, G.R. and Hicks, J.B. 1983. Methods in Yeast Genetics. Cold Spring Harbor, New York.

    Google Scholar 

  24. Maniatis, T., Fritsch, E.F. and Sambrook, J. 1982. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, New York.

    Google Scholar 

  25. Hinnen, A., Hicks, J.B. and Fink, G.R. 1978. Transformation of yeast. Proc. Natl. Acad. Sci. USA 75: 1929–1933.

    Article  CAS  Google Scholar 

  26. Young, R.A. and Davis, R.W. 1983. Yeast RNA polymerase II genes: Isolation with antibody probes. Science 222: 778–782.

    Article  CAS  Google Scholar 

  27. Penttilä, M.M., Andre´, L., Saloheimo, M., Lehtovaara, P. and Knowles, J.K.C. 1987. Expression of two Trichoderma reesei endoglucanases in the yeast Saccharomyces cerevisiae. Yeast 3: 175–185.

    Article  Google Scholar 

  28. Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.

    Article  CAS  Google Scholar 

  29. Miller, J.H. 1972. Experiments in Molecular Genetics. Cold Spring Harbor, New York.

  30. Von-Heijne, G. 1984. How signal sequences maintain cleavage specificity. J. Mol. Biol. 173: 243–251.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, V., Ramakrishnan, S., Teeri, T. et al. Saccharomyces Cerevisiae Cells Secreting an Aspergillus Niger β-Galactosidase Grow on Whey Permeate. Nat Biotechnol 10, 82–85 (1992). https://doi.org/10.1038/nbt0192-82

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0192-82

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing